Содержание

Липиды и липоиды.Биологическая роль в организме.Классификация




. Липи́ды — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках. Будучи одним из основных компонентов биологических мембран, липиды влияют на проницаемость клеток и активность многих ферментов, участвуют в передаче нервного импульса, в мышечном сокращении, создании межклеточных контактов, в иммунохимических процессах. Также липиды образуют энергетический резерв организма, участвуют в создании водоотталкивающих и термоизоляционных покровов, защищают различные органы от механических воздействий и др. К липидам относят некоторые жирорастворимые вещества, в молекулы которых не входят жирные кислоты, например, терпены, стерины. Многие липиды — продукты питания, используются в промышленности и медицине.

ЛИПОИДЫ— жироподобные вещества, входящие в класс липидов.
Группа липоидов классификационно нечёткая, состав её в определении различных исследователей не однозначен. К липоидам относят часть липидной фракции, имеющую изопреноидную структуру: воски, пигменты, сложные жиры и другие вещества.

Биологические функции:

Многие жиры, в первую очередь триглицериды, используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии.

Почти все живые организмы запасают энергию в форме жиров. Существуют две основные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий . Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более чем в два раза больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры гидрофобные соединения, поэтому организм запасает энергию в такой форме,

Жир — хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла.



Фосфолипиды составляют основу биослоя клеточных мембран, холестерин — регулятор текучести мембран.

— Витамины — липиды (A, D, E, K)

— Гормональная (стероиды, эйкозаноиды, простагландины и прочие.)

— Кофакторы (долихол)

— Сигнальные молекулы (диглицериды, жасмоновая кислота; МP3-каскад)

— Производные арахидоновой кислоты — эйкозаноиды — являются примером паракринных регуляторов липидной природы. В зависимости от особенностей строения эти вещества делятся на три основные группы: простагландины, тромбоксаны и лейкориены. Они участвуют в регуляции широкого спектра физиологических функций, в частности эйкозаноиды необходимы для работы половой системы.

Толстый слой жира защищает внутренние органы многих животных от повреждений при ударах.

Резервные запасы жира используется как средство снижения среднего удельного веса тела и, таким образом, увеличения плавучести. Это позволяет снизить расходы энергии на удержание в толще воды.

Классификация липидов:

Простые липиды — липиды, включающие в свою структуру углерод(С), водород(H) и кислород(O).

1 Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения.

2 Жирные альдегиды — высокомолекулярные альдегиды, с числом атомов углерода в молекуле выше 12.

3 Жирные спирты — высокомолекулярные спирты, содержащие 1-3 гидроксильные группы

4 Предельные углеводороды с длинной алифатической цепочкой

5 Сфингозиновые основания

6 Воски — сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов.

Сложные липиды — липиды, включающие в свою структуру помимо углерода(С), водорода(H) и кислорода(О) еще и фосфор(Р), сера(S), азот(N).

1 Фосфолипиды — сложные эфиры многоатомных спиртов и высших жирных кислот, содержащие остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.

2 Гликолипиды — сложные липиды, образующиеся в результате соединения липидов с углеводами.

3 Фосфогликолипиды

4 Сфинголипиды — класс липидов, относящихся к производным алифатических аминоспиртов.




5 Мышьяколипиды

6 Ацилглицериды

7 Триглицериды

8 Диглицериды

9 Моноглицериды

10 Церамиды

11N-ацетилэтаноламиды

Оксилипиды

— Оксилипиды липоксигеназного пути

— Оксилипиды циклооксигеназного пути

 

24. Холестери́н.Биологическое значение для организма.Атеросклероз

Холестери́н (др.-греч. χολή — желчь и στερεός — твёрдый; синоним: холестерол) — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов за исключением безъядерных (прокариоты). Нерастворим в воде, растворим в жирах и органических растворителях. Около 80 % холестерина вырабатывается самим организмом (печенью,кишечником, почками, надпочечниками, половыми железами), остальные 20 % поступают с пищей. В организме находится 80 % свободного и 20 % связанного холестерина. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов, включая кортизол, альдостерон, женских половых гормонов эстрогенов и прогестерона, мужского полового гормона тестостерона, а по последним данным — играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от рака

Биологическая роль:

Холестерин в составе клеточной плазматической мембраны играет роль модификатора бислоя, придавая ему определённую жёсткость за счёт увеличения плотности «упаковки» молекул фосфолипидов. Таким образом, холестерин — стабилизатор текучести плазматической мембраны

Холестерин открывает цепь биосинтеза стероидных половых гормонов и кортикостероидов, служит основой для образования жёлчных кислот и витаминов группы D, участвует в регулировании проницаемости клеток и предохраняет эритроциты крови от действия гемолитических ядов.

Холестерин нерастворим в воде и в чистом виде не может доставляться к тканям организма при помощи основанной на воде крови. Вместо этого холестерин в крови находится в виде хорошо растворимых комплексных соединений с особыми белками-транспортерами, так называемыми аполипопротеинами. Такие комплексные соединения называются липопротеинами.

Существует несколько видов аполипопротеинов, различающихся молекулярной массой, степенью сродства к холестерину и степенью растворимости комплексного соединения с холестерином (склонностью к выпадению кристаллов холестерина в осадок и к формированию атеросклеротических бляшек). Различают следующие группы: высокомолекулярные (HDL, ЛПВП, липопротеины высокой плотности) и низкомолекулярные (LDL, ЛПНП, липопротеины низкой плотности), а также очень низкомолекулярные (VLDL, ЛПОНП, липопротеины очень низкой плотности) и хиломикрон.

К периферийным тканям холестерин транспортируется хиломикроном, ЛПОНП и ЛПНП. К печени, откуда затем холестерин удаляется из организма, его транспортируют аполипротеины группы ЛПВП.

Нарушения липидного обмена считаются одним из наиболее важных факторов развития атеросклероза. К атерогенным нарушениям липидного обмена относятся:

1Повышение уровня общего холестерина крови

2Повышение уровня триглицеридов и липопротеинов низкой плотности (ЛНП)

3Снижение уровня липопротеинов высокой плотности (ЛВП).

Связь повышенного уровня холестерина и атеросклероза неоднозначна: с одной стороны увеличение содержания холестерина в плазме крови считается бесспорным фактором риска атеросклероза, с другой стороны атеросклероз часто развивается у людей с нормальным уровнем холестерина. В действительности высокий уровень холестерина является лишь одним из многочисленных факторов риска атеросклероза (ожирение,курение, диабет, гипертония). Наличие этих факторов у людей с нормальным уровнем холестерина потенцирует негативное влияние свободного холестерина на стенки сосудов и тем самым приводит к образованию атеросклероза при более низких концентрациях холестерина в крови.

Существует также иной взгляд на проблематику холестерина. Холестерин как «ремонтный» материал скапливается в местах микроповреждений сосудов и блокирует эти повреждения, выполняя гомогенную лекарственную роль. Именно поэтому атеросклероз наблюдается у людей с нормальным уровнем холестерина. У людей с повышенным уровнем проблема появляется быстрее, плюс, наличие повышенного уровня холестерина проще статистически связать с атеросклерозом, что и было сделано в начале исследований, из-за чего холестерин был объявлен виновником всех бед. Поэтому же, просто снижение уровня холестерина само по себе не решает всех проблем с сосудами. Недостаток холестерина в таком случае может явиться причиной кровоизлияний. Требуется дальнейшее изучение причин, вызывающих повреждения сосудов и разработка методов их лечения.

 

25. Cинтез холестерина до мевалоновой кислоты

Cинтез мевалоната протекает в три этапа.

1. Образование ацетоацетил-КоА из двух молекул ацетил-КоА с помощью тиолазного фермента ацетоацетилтрансферазы. Реакция обратима. Происходит в цитозоле.

2. Образование β-гидрокси-β-метилглутарил-КоА из ацетоацетил-коА с третьей молекулой ацетил-КоА с помощью гидроксиметилглутарил-КоА-синтазы (ГМГ-КоА-синтазы). Реакция также обратима. Происходит в цитозоле.

3. Образование мевалоната восстановлением ГМГ и отщеплением HS-KoA с помощью НАДФ-зависимой гидроксиметилглутарил-КоА-редуктазы (ГМГ-КоА-редуктаза). Происходит в гЭПР. Это первая практически необратимая реакция в цепи биосинтеза холестерина, а также она лимитирует скорость биосинтеза холестерина. Отмечены суточные колебания синтеза этого фермента. Активность его увеличивается при введении инсулина и тиреоидных гормонов, снижается при голодании, введении глюкагона, глюкокортикоидов.

 

Обмен липидов в ЖКТ

В процессах пищеварения все омыляемые липиды (жиры, фосфолипиды, гликолипиды, стериды) подвергаются гидролизу на составные части.

В составе липидов пищи преобладают триглицериды. Большая часть поступающих с пищей триглицеридов расщепляется до моноглицеридов и жирных кислот в тонком кишечнике. Гидролиз жиров происходит под влиянием липаз сока поджелудочной железы и слизистой оболочки тонкого кишечника. Соли желчных кислот и фосфолипиды, проникающие из печени в просвет тонкого кишечника в составе желчи, способствуют образованию устойчивых эмульсий. В результате эмульгирования резко увеличивается площадь соприкосновения образовавшихся мельчайших капелек жира с водным раствором липазы, и этим самым увеличивается липолитическое действие фермента. Соли желчных кислот стимулируют процесс расщепления жиров не только участвуя в их эмульгировании, но и активируя липазу.

Расщепление стероидов происходит в кишечнике при участии фермента холинэстеразы, выделяющегося с соком поджелудочной железы. В результате гидролиза стероидов образуются жирные кислоты и холестерин.

Фосфолипиды расщепляются полностью или частично под действием гидролитических ферментов — специфических фосфолипаз. Продуктом полного гидролиза фосфолипидов являются : глицерин, высшие жирные кислоты, фосфорная кислота и азотистые основания.

Всасыванию продуктов переваривания жиров предшествует образование мицелл — надмолекулярных образований или ассоциатов. Мицеллы содержат в качестве основного компонента соли желчных кислот, в которых растворены жирные кислоты, моноглицериды, холестерин и т.п.

В клетках кишечной стенки из продуктов пищеварения, а в клетках печени, жировой ткани и других органов из предшественников, возникших в обмене углеводов и белков, происходит построение молекул специфических липидов тела человека — ресинтез триглицеридов и фосфолипидов. Однако их жирнокислотный состав по сравнению с жирами пищи изменен: в триглицеридах, синтезируемых в слизистой оболочке кишечника содержатся арахидоновая и линоленовая кислоты даже в том случае, если они отсутствуют в пище. Кроме того, в клетках кишечного эпителия жировая капля покрывается белковой оболочкой и происходит формирование хиломикронов — большая жировая капля, окруженная небольшим количеством белка. Транспортирует экзогенные липиды в печень, адипозную ткань, соединительную ткань , в миокард. Поскольку липиды и некоторые их составные части нерастворимы в воде, для переноса из одного органа в другой они образуют особые транспортные частицы, в составе которых обязательно есть белковый компонент. В зависимости от места образования эти частицы различаются структурой, соотношением составных частей и плотностью. Если в составе такой частицы в процентном соотношении жиры преобладают над белками, то такие частицы называются липопротеинами очень низкой плотности (ЛПОНП) илилипопротеинами низкой плотности (ЛПНП). По мере увеличения процентного содержания белка (до 40%) частица превращается в липопротеин высокой плотности (ЛПВП). В настоящее время изучение таких транспортных частиц дает возможность с большой степенью точности оценивать состояние липидного обмена организма и использование липидов в качестве источников энергии.

Если образование липидов происходит из углеводов или белков, предшественником глицерина становится промежуточный продукт гликолиза — фосфодиоксиацетон, жирных кислот и холестерина — ацетилкофермент А, аминоспиртов — некоторые аминокислоты. Синтез липидов требует больших энерготрат для активации исходных веществ.

Основной часть продуктов распада жиров всасывается из клеток кишечного эпителия в лимфатическую систему кишечника, грудной лимфатический проток и только затем — в кровь.

 

Патологии ЛИПИДНОГО ОБМЕНА

Нарушение процессов всасывания жиров. Нарушения липидного обмена возможны уже в процессе переваривания и всасывания жиров. Одна группа расстройств связана с недостаточным поступлением панкреатической липазы в кишечник, вторая обусловлена нарушением поступления в кишечник желчи. Кроме того, нарушения процессов переваривания и всасывания липидовмогут быть связаны с заболеваниями пищеварительного тракта (при энтеритах, гиповитаминозах и некоторых других патологических состояниях). Образовавшиеся в полости кишечника моноглицериды и жирные кислоты не могут нормально всасываться вследствие повреждения эпителиального покрова кишечника. Во всех этих случаях кал содержит много нерасщепленного жира или невсосавшихся высших жирных кислот и имеет характерный серовато-белый цвет.

Нарушение процессов перехода жира из крови в ткань. При недостаточной активности липопротеинлипазы крови нарушается переход жирных кислот из хиломикронов (ХМ) плазмы крови в жировые депо (не расщепляются триглицериды). Чаще это наследственное заболевание, обусловленное полным отсутствием активности липопротеинлипазы. Плазма крови при этом

имеет молочный цвет в результате чрезвычайно высокого содержания ХМ. Наиболее эффективным лечением этого заболевания является замена природных жиров, содержащих жирные кислоты с 16–18 углеродными атомами, синтетическими, в состав которых входят короткоцепочечные жирные кислоты с 8–10 углеродными атомами. Эти жирные кислоты способны всасываться из кишечника непосредственно в кровь без предварительного образования ХМ.

Кетонемия и кетонурия. В крови здорового человека кетоновые (ацетоновые) тела содержатся в очень небольших концентрациях. Однако при голодании, а также у лиц с тяжелой формой сахарного диабета содержание кетоновых тел в крови может повышаться до 20 ммоль/л. Это состояние носит название кетонемии; оно обычно сопровождается резким увеличением содержания кетоновых тел в моче (кетонурия). Например, если в норме за сутки с мочой выводится около 40 мг кетоновых тел, то при сахарном диабете содержание их в суточной порции мочи может доходить до 50 г и более. В настоящее время явления кетонемии и кетонурии при сахарном диабете или голодании можно объяснить следующим образом. И диабет, и голодание сопровождаются резким сокращением запасов гликогена в печени. Многие ткани и органы, в частности мышечная ткань, находятся в состоянии энергетического голода (при недостатке инсулина глюкоза не может с достаточной скоростью поступать в клетку). В этой ситуации благодаря возбуждению метаболических центров в ЦНС импульсами с хе-морецепторов клеток, испытывающих энергетический голод, резко усиливаются липолиз и мобилизация большого количества жирных кислот из жировых депо в печень. В печени происходит интенсивное образование кетоновых тел. Образующиеся в необычно большом количестве кетоновые тела (ацетоуксусная и β-гидроксимасляная кислоты) с током крови транспортируются из печени к периферическим тканям. Периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением и как следствие возникает кетонемия. Атеросклероз и липопротеины. В настоящее время доказана ведущая роль определенных классов липопротеинов в патогенезе атеросклероза. Известное положение акад. Н.Н. Аничкова «без холестерина нет атеросклероза» с учетом современных знаний можно выразить иначе: «без атерогенных липопротеинов не может быть атеросклероза».

 

27.Жирные кислоты.Бета-окисление жирных кислот

Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвленную цепь из четного числа атомов углерода (С4-24, включая карбоксильный углерод) и могут быть как насыщенными, так и ненасыщенными. Ненасыщенные жирные кислоты в свою очередь делятся на

а) моноеновые те содержащие одну двойную связь

б) полиеновые, содержащие много двойных связей (диеновые, триеновые и др)

Природные ненасыщенные жирные кислоты (незаменимые) обычно имеют тривиальное название, например алеиновая, линоливая, линоленовая арахндоновая Жирные кислоты в организме выполняют несколько функций. Прежде всею несомненно это энергетическая функция. Так же выполняют структурную функцию. Выполняют пластическую функцию. Процесс β-окисления протекает поэтапно. На каждом этапе от жирной кислоты отщепляется двухуглеродный фрагмент в виде ацетил-коэнзима А, а также происходит восстановление НАД+ до НАД∙Н и ФАД до ФАД∙Н2.

В ходе первой реакции происходит окисление группы –СН2-СН2–, расположенной около карбонильного атома углерода. Как и при окислении сукцината в цикле Кребса, окислителем служит ФАД. Затем (вторая реакция) происходит гидратация двойной связи образовавшегося непредельного соединения, при этом третий атом углерода становится гидроксилированным – образуется β-оксикислота, присоединенная к коэнзиму А. В ходе третьей реакции происходит окисление этой спиртовой группы до кетогруппы, в качестве окислителя используется НАД+. Наконец, с образовавшимся β-кетоацил-коэнзимом А реагирует другая молекула коэнзима А. В результате отщепляется ацетил-коэнзим А, и ацил-КоА укорачивается на два углеродных атома. Теперь циклический процесс будет протекать по второму заходу, остаток жирной кислоты укоротится еще на один ацетил-КоА, и так до полного расщепления жирной кислоты. Из четырех реакций β-окисления только первая является необратимой, остальные – обратимы, их прохождение слева направо обеспечивается постоянным выводом конечных продуктов.

Суммарно β-окисление пальмитоил-коэнзима А протекает согласно уравнению:

C15h41CO-КоА + 7НАД+ + 7ФАД + 7КоА + 7Н2О = 8ацетил-КоА + 7НАД∙Н + 7ФАД∙Н2 + 7Н+

Ацетил-КоА затем поступает в цикл Кребса. НАД∙Н и ФАД∙Н2 окисляются в митохондриях, обеспечивая энергией синтез АТФ.

 

29. Желчные кислоты, строение, биологическая роль.

Желчные кислоты — тетрациклические монокарбоновые оксикислоты из класса стероидов. По химической природе являются производными холановой кислоты С23Н39СООН. Они -конечный продукт метаболизма холестерина. Желчные кислоты образуются в печени и выделяются с желчью, как в свободном виде, так и как парные соединения с глицином и таурином. Глицин и таурин связаны с желчными кислотами пептидными связями. В желчи человека в основном содержатся холевая, дезоксихолевая и хенодезоксихолевая. Кроме того, в малых количествах присутствуют литохолевая, аллохолевая и уреодезоксихолевые кислоты. После выделения желчи в кишечник при действии ферментов кишечной микрофлоры из первичных желчных кислот образуются литохолевая и дезоксихолевая кислоты — вторичные желчные кислоты. Они всасываются из кишечника, с кровью воротной вены попадают в печень, а затем в желчь.

Желчные кислоты обладают амфифильными свойствами. Боковая цепь с остатком глицина или таурина гидрофильна, а циклическая часть является гидрофобной. Амфифильная природа желчных кислот обусловливает их участие в переваривании и всасывании жиров.

Желчные кислоты являются поверхностно-активными веществами, принимают участие в эмульгировании жиров. Желчные кислоты резко уменьшают поверхностное натяжение на границе жир/вода. Эмульгирование жиров ускоряет процессы переваривания липидов, т.к. увеличивается поверхность соприкосновения жира с липазой поджелудочной железы. Наиболее мощное эмульгирующее действие на жиры оказывают щелочные (натриевые или калиевые) соли парных желчных кислот.

Желчные кислоты являются активаторами липолитических ферментов (превращение пролипазы в липазу), повышают активность панкреатической липазы в 10-15 раз; а также регулируют перистальтику (моторику) кишечника, обладают бактерицидным действием, подавляя гнилостные процессы.

Желчные кислоты принимают участие во всасывании жиров. Они образуют с жирными кислотами и холеиновые комплексы, которые проникают в клетки слизистой кишечника. Отсюда желчные кислоты поступают в кровь, а с ней — в печень, повторно участвуя в образовании желчи (90-95 % проходят энтерогепатический цикл 5-10 раз за сутки). Небольшая часть желчных кислот — около 0,5 г за сутки — выводится из организма. Фонд желчных кислот обновляется полностью примерно за 10 дней.










infopedia.su

Липиды (жиры и липоиды) — О некоторых компонентах, участвующих в обмене веществ — Лекарственные богатства Киргизии — Библиотека доктора — Медкурсор

21 сентября 2010

К группе сложных органических веществ, называемых липидами, относятся нейтральные жиры и близкие к ним жироподобные вещества — липоиды.

Все липиды нерастворимы в воде, но растворяются в эфире, хлороформе, горячем спирте, бензоле.

Нейтральные жиры состоят из углерода, водорода и кислорода, то есть из тех же химических элементов, которые входят в состав углеводов. Но количественное соотношение этих элементов в молекулах жира иное, чем в углеводах. Молекула жира содержит большое количество атомов углерода и водорода при весьма ограниченном содержании атомов кислорода.

По своему химическому строению жиры являются сложными эфирами трехатомного спирта — глицерина и высших жирных кислот.

К наиболее важным жирным кислотам, входящим в состав жиров и липоидов, относятся олеиновая, стеариновая и пальмитиновая кислоты.

Липоиды в зависимости от своего химического строения делятся на несколько групп. Липоиды, имеющие в своем составе жирные кислоты, многоатомные спирты, фосфорную кислоту и азотистые соединения, называются фосфатидами. Эти вещества содержатся во всех тканях животного организма.

Особенно богаты фосфатидами нервная ткань, сердце и печень. Стерины составляют другую группу липоидов, по химическому строению они являются циклическими спиртами. Стерины широко распространены в растительном и животном мире. Один из представителей стеринов — холестерин — входит в состав мозговой и многих других тканей. По химическому строению к группе стеринов близки многие биологически активные вещества, например провитамины группы Д, половые гормоны, гормоны коры надпочечников.


«Лекарственные богатства Киргизии»,
А.Алтымышев

Читайте далее:

Углеводы — обязательные компоненты, живой протоплазмы. В животном организме углеводы составляют около 2% сухого остатка. Кроме того, углеводы выполняют роль основного источника энергии. При окислении одного грамма углеводов освобождается 4,1 ккал энергии. Для полного окисления углеводов требуется меньше кислорода, чем для окисления других питательных веществ. Это обусловлено относительно большим содержанием кислорода в углеводных молекулах по…

Появление глюкозы в моче наблюдается после единовременного приема натощак 150—200 г сахара. При постепенном введении сахара, особенно в сочетании с другими пищевыми веществами, резкого увеличения глюкозы в крови, а следовательно, и выведения ее с мочой не происходит. В процессе переваривания сложных углеводов постепенно поступающая в кровь глюкоза отлагается в виде гликогена в печени и в…

Понижение уровня глюкозы в крови отражается на состоянии всего организма и прежде всего на центральной нервной системе. При этом наблюдается снижение работоспособности, дрожание конечностей, расстройство психической деятельности. Эти явления ликвидируются после приема сахара или глюкозы. Один из факторов утомления при длительной физической работе — уменьшение содержания глюкозы в крови. Эффект от приема углеводов для организма…

Жир и липоиды — обязательные составные части клеточной протоплазмы. Липоиды входят в состав ядер, ной субстанции и клеточных оболочек. Жиры, входящие в состав протоплазмы, называются протоплазматическими, или структурными. Этими жирами особенно богаты нервная ткань и надпочечники. Содержание протоплазматического жира в организме постоянно, он сохраняется неприкосновенным даже при длительном голодании. Кроме структурного жира, организм имеет более…

Жировая ткань обладает значительной упругостью; покрывая другие ткани, она защищает их от различных механических повреждений. Жировая ткань, покрывая внутренние органы, предохраняет их от резких смещений при ударах и сотрясениях. Являясь плохим проводником тепла, подкожная жировая клетчатка защищает тело от излишних теплопотерь. Подкожный жировой слой особенно хорошо развит у животных холодного климата. Жир, выделяясь с секретом…

www.medkursor.ru

СТРОЕНИЕ И ОБМЕН ЖИРОВ И ЛИПОИДОВ

1. Химическое строение и биологическая роль жиров и липоидов.

2. Переваривание и всасывание жиров.

3.  Катаболизм жиров.

4. Синтез жиров.

  1.  Химическое строение и биологическая роль жиров и липоидов.

Жиры или липиды – это группа разнообразных по строению веществ, обладающих одинаковыми физико-химическими свойствами: они не растворимы в воде (гидрофобность), но хорошо растворимы в органических (неполярных) растворителях (бензол, толуол, бензин, гексан, хлороформ, метиловый и этиловый спирт и др.)

Жиры делятся на две группы – собственно жиры или липиды и жироподобные вещества или липоиды.

Липоиды (lipoida; липо- + греч. -eides подобный) (гр. lipos жир + eidos вид) – устаревшее общее название жироподобных веществ природного происхождения: фосфатидов, стеринов, сфинголипидов и восков, которые являются структурными компонентами клеточных мембран; в настоящее время относятся к липидам.

К липидам относят большую группу содержащихся в живых клетках органических веществ с различным строением и некоторыми общими физико-химическими свойствами. Такими общими свойствами липидов являются их нерастворимость в воде (гидрофобность) и растворимость в неполярных растворителях: ацетоне, бензоле, хлороформе, метиловом и этиловом спиртах и др.

В составе липидов обнаружены многочисленные и разнообразные структурные компоненты: высшие жирные кислоты, спирты, альдегиды, углеводы, азотистые основания, аминокислоты, фосфорная кислота и др. Эти компоненты могут быть связаны между гобой различными связями: сложноэфирной, простой эфирной, гликозидвой, амидной и др. Поэтому до настоящего времени не существует строгой, в химическом смысле, единой классификации липидов

Молекула жира состоит из глицерина и трех остатков жирных кислот, соединенных сложноэфирной связью. Это так называемые истинные жиры или триглицериды.

         Ch3OH

|

       CHOH

|

          Ch3OH

    Глицерин

Глицериды (ацилглицеролы). Глицериды (ацилглицерины, или ацилглицеролы ) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицированы все три гидроксильные группы глицерина (ацильные радикалы R1, R2 и R3 могут быть одинаковы или различны), то такое соединение называют триглицеридом (триацилглицерол), если две – диглицеридом (диацилглицерол) и, наконец, если этерифицирована одна группа – моноглицеридом (моноацилглицерол):

Наиболее распространенными являются триглицериды, часто называемые нейтральными жирами или просто жирами. Нейтральные жиры находятся в организме либо в форме протоплазматического жира, являющегося структурным компонентом клеток, либо в форме запасного, резервного, жира. Роль этих двух форм жира в организме неодинакова. Протоплазматический жир имеет постоянный химический состав и содержится в тканях в определенном количестве, не изменяющемся даже при патологическом ожирении, в то время как количество резервного жира подвергается большим колебаниям.

Жирные кислоты, входящие в состав жиров делятся на предельные и непредельные. Первые не имеют двойных связей и называются ещё  насыщенными, а вторые имеют двойные связи и называются ненасыщенными.

Жирные кислоты

Некоторые физиологически важные насыщенные жирные кислоты

Число атомов С

Тривиальное название

Систематическое название

Химическая формула соединения

3

4

5

6

8

10

12

14

16

18

20

22

24

Пропионовая

Масляная

Валериановая

Капроновая

Каприловая

Каприновая

Лауриновая

Миристиновая

Пальмитиновая

Стеариновая

Арахиновая

Бегеновая

Лигноцериновая

Пропановая

Бутановая

Пентановая

Гексановая

Октановая

Декановая

Додекановая

Тетрадекановая

Гексадекановая

Октадекановая

Эйкозановая

Докозановая

тетракозановая  

СН3—(СН2)—СООН

СН3—(СН2)2—СООН

Ch4— (Ch3)3—COOH

СН3—(СН2)4—СООН

СН3—(СН2)6—СООН

СН3—(СН2)8—СООН

СН3—(СН2)10—СООН

СН3—(СН2)12—СООН

СН3—(СН2)14—СООН

СН3—(СН2)16—СООН

СН3—(СН2)18—СООН

СН3—(СН2)20—СООН

СН3—(СН2)22—СООН

Есть ещё полиненасыщенные жирные кислоты, имеющие две и более двойные связи. Такие жирные кислоты в организме человека не синтезируются и должны обязательно поступать с пищей, так как являются для синтеза некоторых важных липоидов. Чем больше двойных связей, тем ниже температура плавления жира.

Ненасыщенные жирные кислоты делают жиры более жидкими. Их много содержится в растительном масле.

Жиры разного происхождения отличаются набором жирных кислот, входящих в их состав.

Жиры нерастворимы в воде. Однако, в присутствии особых веществ – эмульгаторов – жиры при смешивании с водой образуют устойчивую смесь – эмульсию. Пример эмульсии – молоко, а пример эмульгатора – мыла – натриевые соли жирных кислот. В организме человека в роли эмульгаторов выступают желчные кислоты и некоторые белки.

В организме животных и человека можно выделит три класса липоидов.

Все липиды можно разделить на следующие классы: фосфолипиды, сфинголипиды, гликолипиды, стероиды, воска.

1. Фосфолипиды, состоящие из жирных кислот, спирта и обязательно фосфорной кислоты.

Глицерофосфолипиды являются производными фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Общая формула глицерофосфолипидов выглядит так:

В этих формулах R1 и R2 – радикалы высших жирных кислот, a R3 – чаще радикал азотистого соединения.

2. Гликолипиды, состоящие из жирной кислоты, спирта и какого-нибудь простого углевода, чаще всего галактозы.

Гликолипиды — (от греч. γλυκός (glykos) — сладкий и λίπος (lípos) — жир) сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Простейшими гликосфинголипидами являются галактозилцерамиды и глюкозилцерамиды

Существуют сульфогалактозилцерамиды, которые отличаются от галактозилцерамидов наличием остатка серной кислоты, присоединенного к третьему углеродному атому гексозы. В мозге млекопитающих сульфогалактозилцерамиды в основном находятся в белом веществе, при этом содержание их в мозге намного ниже, чем галактозилцерамидов.

3. Сфинголипиды — (это класс липидов, относящихся к производным алифатических аминоспиртов) сложные липиды, в состав которых входит ненасыщенный аминоспирт сфингозин, его гомологи или аналоги.Они играют важную роль в передаче клеточного сигнала и в клеточном распознавании. Особенно богата сфинголипидами нервная ткань.

Сфинголипиды. содержатся в миелиновой оболочке нервов, в  мембранах эритроцитов, а также клеток печени, селезёнки и др. органов.

4. Стероиды, содержащие сложное стерановое кольцо.

Стерины относятся к классу стероидов — эфиров, образованных высокомолекулярными одноатомными спиртами с жирными кислотами. Представители только одного класса стероидов — стерины — содержатся в клетках в заметных количествах.

Все рассмотренные липиды принято называть омыляемыми, поскольку при их щелочном гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот. К таким липидам относятся стероиды. Стероиды – широко распространенные в природе соединения. Они часто обнаруживаются в ассоциации с жирами. Их можно отделить от жира путем омыления (они попадают в неомыляемую фракцию). Все стероиды в своей структуре имеют ядро, образованное гидрированным фенантреном (кольца А, В и С) и циклопентаном (кольцо D):

Представителем стеринов является высокомолекулярный спирт холестерин (С25Н45ОН). Он участвует в образовании некоторых гормонов надпочечников и других биологически активных веществ, холестерин способен также связывать и обезвреживать в организме бактериальные гемотоксины. В организм холестерин поступает с пищей и синтезируется самим организмом. Из фитостеринов в растительных продуктах встречаются эргостерины, ситостерины и стигмастерины. Фитостерины отличаются от холестерина строением боковой цепи, а также количеством и положением двойных связей в циклической системе и боковой цепи.

Из известных фитостеринов наиболее важное значение имеет эргостерол (С28Н43ОН). При облучении ультрафиолетовыми лучами эргостерол переходит в витамин Для стеринов характерно наличие гидроксильной группы в положении 3, а также D. боковой цепи в положении 17. У важнейшего представителя стеринов – холестерина – все кольца находятся в транс-положении; кроме того, он имеет двойную связь между 5-м и 6-м углеродными атомами. Следовательно, холестерин является ненасыщенным спиртом:

Содержание стеринов в жирах следующее (%): в льняном масле — 0,42, в коровьем — 0,07; в тресковом жире -0,52; в жире яичных желтков — 1,6, в зерне пшеницы — 0,03-0,07. Дрожжи, в пересчете на сухое вещество содержат свыше 2 % стеринов и стероидов.

5. Воска — это группа жироподобных веществ, построенных эфирообразно из высокомолекулярных одноатомных спиртов и высших монокарбоновых жирных кислот. В отличие от жиров в образовании восков глицерин не принимает участия. Часто в состав восков входят свободные жирные кислоты и спирты, а также углеводороды, красящие и ароматические веществ. (СН3СООС16Н33 – пчелиный воск)

Все воски при обычных условиях твердые. Различают воски растительного и животного происхождения. Воски в растениях и животных выполняют главным образом защитную функцию. В растениях воски покрывают тонким слоем листья, стебли, плоды, предохраняя их от смачивания, проникновения микроорганизмов и испарения влаги, а также воски рассеяны внутри клетки, как жиры.

К представителям восков животного происхождения относятся пчелиный воск, ланолин — воск, содержащийся в овечьей шерсти, и спермацет, добываемый из черепных полостей кашалота. Различные воски широко используют при изготовлении свечей, помад, мыла, разных пластырей и др.


 

Значение жиров и стероидов в организме очень велико.

  •  Жиры являются важным источником энергии. Из одного грамма жира организм извлекает около 9ккал энергии, что в 2 раза больше, чем из 1 г углеводов.
  •  Жиры защищают организм от переохлаждения и механических воздействий(например ударов).
  •  Жирные кислоты и липоиды входят в состав многих гормонов.
  •  Липоиды являются важнейшими компонентами клеточных мембран.
  •  Под воздействием УФ- излучения из липоида – холестерина образуется витамин D.
  •  Жиры являются растворителями витаминов A, D, Е и К, в связи с чем обеспеченность организма этими витаминами в значительной степени зависит от поступления жиров в составе пищи.  

 2. Переваривание и всасывание жиров.

    В суточном рационе обычно содержится 80- 100 г жиров.

Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений. В желудочном соке содержится липаза, получившая название желудочной, однако роль ее в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человека и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5–7,5). Напомним, что значение рН желудочного сока около 1,5. В-третьих, в желудке отсутствуют условия для эмульгирования триглицеридов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии.

Переваривание жира в организме человека происходит в тонком кишечнике. Жиры предварительно с помощью желчных кислот превращается в эмульсию. В процессе эмульгирования крупные капли жира превращаются  в  мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы – липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Поэтому увеличение общей поверхности капель жира за счет эмульгирования значительно повышает эффективность действия этого фермента. Под действием липазы жир путем гидролиза расщепляется до глицерина и жирных кислот.

СН -~ ОН + R2- СООН

I

СН -~ ОН + R2- СООН

I

                     O

                                 ||

         Ch3  — O —  C                                       Ch3OH               R1  — COOH

         

          |                      O                                       |

                                 ||             + 3 h3O             

         CH   — O —  C  — R2                                      CH — OH     +    R2  — COOH

                                                                      

           |                     O                                        |

                                  ||

          Ch3  — O —  C                                        Ch3OH                R3  — COOH

       Жир                                                  Глицерин         

   Поскольку в пище присутствуют разнообразные жиры, то в результате их переваривания образуется большое количество разновидностей жирных кислот.

Продукты расщепления жира всасываются слизистой тонкого кишечника. Глицерин растворим в воде, поэтому его всасывание происходит легко. Жирные кислоты, нерастворимые в воде, всасываются виде комплексов с желчными кислотами (комплексы, состоящие из жирных и желчных кислот, называются холеиновыми кислотами) В клетках тонкой кишки холеиновые кислоты распадаются на жирные и желчные кислоты. Желчные кислоты из стенки тонкого кишечника поступают в печень и затем снова выделяются в полость тонкого кишечника.

Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира.

Ресинтезированные жиры по лимфатическим сосудам минуя печень поступают в большой круг кровообращения и откладываются в запас в жировых депо. Главные жировые депо организма располагаются в подкожной жировой клетчатке, большом и малом сальниках, околопочечной капсуле.

Изменения жиров при хранении. Характер и степень изменения жиров при хранении зависят от воздействия на них воздуха и воды, температуры и продолжительности хранения, а также от наличия веществ, способных вступать в химическое взаимодействие с жирами. Жиры могут претерпевать различные изменения – от инактивации содержащихся в них биологически активных веществ до образования токсичных соединений.

При хранении различают гидролитическую и окислительную порчу жиров, нередко оба вида порчи протекают одновременно.

Гидролитическое расщепление жиров протекает в процессе изготовления и хранения жиров и жиросодержащих продуктов. Жиры при определенных условиях реагируют с. водой, образуя глицерин и жирные кислоты.

Степень гидролиза жиров характеризуется содержанием свободных жирных кислот, ухудшающих вкус и запах продукта. Реакция гидролиза может быть обратимой и зависит от содержания в реакционной среде воды. Гидролиз протекает ступенчато в 3 стадии. На первой стадии от молекулы триглицерида отщепляется одна молекула жирной кислоты с образованием диглицерида. Затем на второй стадии от диглицерида отщепляется вторая молекула жирной кислоты с образованием моноглицерида. И наконец, на третьей стадии в результате отделения от моноглицерида последней молекулы жирной кислоты образуется свободный глицерин. Ди- и моноглицериды, образующиеся на промежуточных стадиях, способствуют ускорению гидролиза. При полном гидролитическом расщеплении молекулы триглицерида образуется одна молекула глицерина и три молекулы свободных жирных кислот.

3. Катаболизм жиров.

Использование жира в качестве источника энергии начинается с его выхода из жировых депо в кровяное русло. Этот процесс называется мобилизация жира. Мобилизация жира ускоряется под действием симпатической нервной системы и гормона адреналина.

В печени происходит гидролиз жира до глицерина и жирных кислот.

Глицерин легко переходит в фосфоглицериновый альдегид. Это вещество является также промежуточным продуктом углеводов и поэтому легко вовлекается в углеводный обмен.

Жирные кислоты соединяются с коферментом А  и образуют соединение ацилкофермент А (ацил-КоА):

                                       

                                                                O

                                        + ATФ            ||

R — COOH + HSKoA                  R — C         SKoA

 Жирная                           ‒ АМФ    Ацилкофермент А

кислота                           ‒ ФФ          

Образовавшийся  комплекс жирная кислота +кофермент А – называется ацилкофермент А.

                          

 эти процессы происходят в цитоплазме. Далее ацил-КоА передает жирную кислоту корнетину. Корнетин переносит жирную кислоту внутрь  митохондрии и вновь отдает ее коферменту А, но в этот раз митохондриальному.

Транспорт жирных кислот внутрь митохондрий.

В митохондриях окисление жирных кислот проходит в два этапа.

Первый этап – β-окисление. Окислению подвергается углеродный атом жирной кислоты, находящийся в положении «бета». От жирной кислоты, связанной с КоА, дважды отщепляется по два атома водорода, которые затем по дыхательной цепи передаются на молекулярный кислород. В итоге образуется вода и образуется пять молекул АТФ. Этот процесс повторяется многократно, пока жирная кислота полностью не превратится в ацетил-КоА.

R                          R                        R                      R

|                            |                          |                        |

Ch3                      CH                     CH—OH         C = O               Ch4           R

|                            ||        +h3O       |                        |     +HSKoA    |             |

Ch3                      CH                     Ch3                  Ch3                  C = O  + C = O

|             ‒ 2H       |                          |         ‒ 2H       |                       

C = O                  C = O                C = O               C = O                   SKoA         SKoA

                                                                                                    Aцетил-КоА     Укороченныя

    SKoA                   SKoA                SKoA                SKoA                                       жирная 

                                                                                                                                      кислота

                                  

 

Схема бета-окисления

НАД – никотин-амида-денин-динуклеотид, НАДН2 – восстановленный кофермент

НАДФ – никоти-намида-денин-динуклеотид-фосфат

ФАД – флавин-аденин-динуклеотид

ФМН – флавин-мононуклеотид

АДФ – аденозиндифосфат

НАДГ– никотинамидные дегидрогеназы

        Еноил-КоА– ненасыщенный ацил-КоА

            Комплекс жирная кислота +кофермент А называется ацилкофермент А.

 АПБ – ацилпереносящий белок.

ДАФ –дигидроацетонфосфат,

ДАГ – диацилглицерин.

ТАГ – триацилглицерол.

Второй этапом окисления – цикл трикарбоновых кислот, в котором происходит дальнейшее окисление  остатка уксусной кислоты, входящей в ацетилкофермент А, до углекислого газа и воды. При окислении одной молекулы ацетилкофермента А выделяется до 12 молекул АТФ. Таким образом, окисление жирных кислот  до углекислого газа и воды дает большое количество энергии. Например, из одной молекулы пальмитиновой кислоты (С15 Н31СООН) образуется 130 молекул АТФ.  

Окисление жирных кислот.

Однако, в силу особенностей строения жирных кислот (слишком много атомов углерода по сравнению с кислородом) их окисление существенно затруднено по сравнению с углеводами. Поэтому жир обеспечивает организм энергией при работе средней мощности, но зато продолжительной. Отсюда вывод, чтобы сжигать жир нужно осуществлять работу средней мощности, но продолжительную.  

При продолжительных физических нагрузках и избыточном образовании ацетилкофермента А, происходит реакция конденсации уксусной кислоты с образованием кетоновых тел. В мышцах, почках и миокарде эти тела вновь переходят в ацетилкофермент А.Таким образом кетоновые тела играют важную роль при длительных спортивных тренировках. Однако при перетренировке они могут образовывать в крови ацетон, который выделяется  с потом, мочой и выдыхаемым воздухом.  

 Схема. Активация синтеза кетоновых тел при голодании. Точечные линии — скорость метаболических путей снижена; сплошные линии — скорость метаболических путей повышена. При голодании в результате действия глюкагона активируются липолиз в жировой ткани и 3-окисление в печени. Количество оксалоацетата в митохондриях уменьшается, так как он, восстановившись до малата, выходит в цитозоль, где опять превращается в оксалоацетат и используется в глюконеогенезе. В результате скорость реакций ЦТК снижается и, соответственно, замедляется окисление ацетил-КоА. Концентрация ацетил-КоА в митохондриях увеличивается, и активируется синтез кетоновых тел. Синтез кетоновых тел увеличивается также при сахарном диабете.

4. Синтез жиров

Синтезируются жиры из глицерина и жирных кислот.

Глицерин в организме возникает при распаде жира (пищевого и собственного), а также легко образуются из углеводов.

Жирные кислоты синтезируются из ацетилкофермента А. Ацетилкофермент А – универсальный метаболит. Для его синтеза необходимы водород и энергия АТФ. Водород же получается из НАДФ.Н2. В организме синтезируются только насыщенные и мононасыщенные (имеющие одну двойную связь) жирные   кислоты. Жирные кислоты, имеющие две и более двойных связей в молекуле, называемые полинасыщенные,  в организме не синтезируются и должны поступать с пищей. Для синтеза жира могут быть использованы жирные кислоты – продукты гидролиза пищевого  и собственного жиров.

Все участники синтеза жира должны быть в активном виде: глицерин в форме глицерофосфата, а жирные кислоты в форме ацетилкофермента А. Синтез жира осуществляется в цитоплазме клеток (преимущественно жировой ткани, печени, тонкой кишки).  Пути синтеза жиров представлены в схеме.

Следует отметить, что глицерин и жирные кислоты могут быть получены из углеводов. Поэтому при избыточном потреблении их на фоне малоподвижного образа жизни развивается ожирение.

ДАФ –дигидроацетонфосфат,

ДАГ – диацилглицерин.

ТАГ – триацилглицерол.

Общая характеристика липопротеинов. Липиды в водной среде (а значит, и в крови) нерастворимы, поэтому для транспорта липидов кровью в организме образуются комплексы липидов с белками – липопротеины.

Все типы липопротеинов имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные части – к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды.

Апопротеины выполняют несколько функций:

• формируют структуру липопротеинов;

• взаимодействуют с рецепторами на поверхности клеток и таким образом определяют, какими тканями будет захватываться данный тип липопротеинов;

• служат ферментами или активаторами ферментов, действующих на липопротеины.

Липопротеины. В организме синтезируются следующие типы липопротеинов: хиломикроны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины промежуточной плотности (ЛППП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП).Каждый из типов ЛП образуется в разных тканях и транспортирует определѐнные липиды. Например, ХМ транспортируют экзогенные (пищевые жиры) из кишечника в ткани, поэтому триацилглицеролы составляют до 85% массы этих частиц.

Свойства липопротеинов. ЛП хорошо растворимы в крови, неопалесцируют, так как имеют небольшой размер и отрицательный заряд на

поверхности. Некоторые ЛП легко проходят через стенки капилляров кровеносных сосудов и доставляют липиды к клеткам. Большой размер ХМ не позволяет им проникать через стенки капилляров, поэтому из клеток кишечника они сначала попадают в лимфатическую систему и потом через главный грудной проток вливаются в кровь вместе с лимфой. Судьба жирных кислот, глицерола и остаточных хиломикронов. В результате действия ЛП-липазы на жиры ХМ образуются жирные кислоты и глицерол. Основная масса жирных кислот проникает в ткани. В жировой ткани в абсорбтивный период жирные кислоты депонируются в виде триацилглицеролов, в сердечной мышце и работающих скелетных мышцах используются как источник энергии. Другой продукт гидролиза жиров, глицерол, растворим в крови, транспортируется в печень, где в абсорбтивный период может быть использован для синтеза жиров.

Гиперхиломикронемия, гипертриглицеронемия. После приѐма пищи, содержащей жиры, развивается физиологическая гипертриглицеронемия и, соответственно, гиперхиломикронемия, которая может продолжаться до нескольких часов.Скорость удаления ХМ из кровотока зависит от:

• активности ЛП-липазы;

• присутствия ЛПВП, поставляющих апопротеины С-II и Е для ХМ;

• активности переноса апоС-II и апоЕ на ХМ.

Генетические дефекты любого из белков, участвующих в метаболизме ХМ, приводят к развитию семейной гиперхиломикронемии – гиперлипопротеинемии типа I.

Содержание жиров в пищевых продуктах. Жиры как запасные вещества находятся в соединительной ткани животных и рыб, в жировой ткани, подкожной клетчатке, печени и костях, а также в семенах растений и иногда в мякоти плодов.
В растениях одного и того же вида состав и свойства жира могут колебаться в зависимости от климатических условий произрастания. Содержание и качество жиров в животном сырье также зависит от породы, возраста, степени упитанности, пола, сезона года и т.д.

Жиры широко используют, при производстве многих пищевых продуктов, они обладают высокой калорийностью и пищевой ценностью, вызывают длительное чувство насыщения. Жиры являются важными вкусовыми и структурными компонентами в процессе приготовления пищевых продуктов, оказывают значительное влияние на внешний вид пищи. При жарке жир играет роль среды, передающей тепло.

Данные о содержании жиров в некоторых продуктах

Название продукта

Примерное содержа-ние жиров в пищевых
продуктах, % на сырую массу

Название продукта

Примерное содержа-ние жиров в пищевых
продуктах, % на сырую массу

Семена:

Хлеб ржаной

1,20

Подсолнечника

35-55

Овощи свежие

0,1-0,5

Конопли

31-38

Плоды свежие

0,2-0,4

Мака

40

Говядина

3,8-25,0

Какао-бобы

55

Свинина

6,3-41,3

Орехи арахиса

40-55

Баранина

5,8-33,6

Орехи грецкие (ядра)

58-74

Рыба

0,4-20

Хлебные злаки:

Молоко коровье

3,2-4,5

Пшеница

2,3

Масло сливочное

61,5-82,5

Рожь

2,0

Маргарин

82,5

Овес

6,2

Яйца

12,1

В жирах, полученных из растительных и животных тканей, кроме глицеридов, могут находиться свободные жирные кислоты, фосфатиды, стеролы, пигменты, витамины, вкусовые и ароматические вещества, ферменты, белки и др., которые влияют на качество и свойства жиров. На вкус и запах жиров также оказывают влияние вещества, образующиеся в жирах при хранении (альдегиды, кетоны, перекисные и другие соединения).

Жиры в организм человека должны постоянно поступать с пищей. Потребность в жирах зависит от возраста, характера работы, климатических условий и других факторов, но в среднем в сутки взрослому человеку необходимо от 80 до 100 г жиров. В суточном рационе должно быть примерно 70 % животных и 30 % растительных жиров.

refleader.ru

Липиды и липоиды в пищевых продуктах

Жиры, жирные кислоты. Жиры (липиды) — это сложные эфиры глицерина и жирных кислот. Липиды способствуют усвоению пищи. Жир вызывает возбужде­ние пищевого центра коры головного мозга. А β-каротин моркови в отсутствии липидов вообще не усваивается. Пищевая ценность липидов обусловлена следующими факторами:

1.высокая энергетическая ценность;

2.наличие полиненасыщенных жирных кислот ПНЖК (линолевая, линоленовая, арахидоновая), которые, как и клетчатка, выводят избыток холестерина и жира. В подсолнечном масле на их долю при­ходится 48%, в основном, это линолевая кислота. Сливочное масле содержит всего 1 % ПНЖК;

3.наличие в их составе жирорастворимых витаминов — А, Д, Е, К-Суточная норма — 80 г, для тучных, пожилых людей — 25 г, причем 40% от этого количества должны приходиться на жиры растельного происхождения, содержащие полиненасыщенные жирные кислоты (ПНЖК) и фосфатиды.

Богаты жирами следующие продукты: какао-бобы — 50% жира, баранина накапливает до 55, свинина -телятина — 46, рыба хамса — 39, сельдевые (залом) — 35% жира. Жиры на 90% состоят из кислот. Предельные жирные кислоты имеют общую формулу: СпН2n+1 СООН. Липоиды — вещества, сопутствующие жирам. Липоиды, или жироподобные вещества, в том или ином количестве всегда содержатся в натуральных жирах и значительно влияют на их пищевые свойства.

Различают следующие виды липоидов:

Фосфатиды. Фосфатиды делятся на следующие группы:

  • Холинфосфатиды (лецитины).
  • Коламинфосфатиды (кефалины).
  • Серинфосфатиды.
  • Прочие: ацетальфосфатиды, цвингофосфатиды.

Стеролы. Стеролы растительного происхождения называются фитостеролы, животного происхождения -зоостеролы. К стеролам, имеющим важное значение в питании, относится холестерин.

Стериды. Стериды — мало изучены, но важны. Эхо желчные кислоты, холевая кислота, половые гормоны и гормоны надпочечников.

Воски. Воски — образованы одно- и двухатомными высокомолекулярными спиртами и высокомолекулярной нежирной кислотой, по химической природе это сложные эфиры. К воскам растительного происхождения от­носится кутин, животного — пчелиный, спермацет, ланолин (с овечьей шерсти). Пищевой ценности не имеют, но нужны как сырьё для промышленности.

tovaroveded.ru

Липоиды Википедия

Липи́ды (от др.-греч. λίπος — жир) — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках[1].
Будучи одним из основных компонентов биологических мембран, липиды влияют на проницаемость клеток и активность многих ферментов, участвуют в передаче нервного импульса, в мышечном сокращении, создании межклеточных контактов, в иммунохимических процессах[2].
Также липиды образуют энергетический резерв организма, участвуют в создании водоотталкивающих и термоизоляционных покровов, защищают различные органы от механических воздействий и др[1]. К липидам относят некоторые жирорастворимые вещества, в молекулы которых не входят жирные кислоты, например, терпены, стерины. Многие липиды — продукты питания, используются в промышленности и медицине[1].

Согласно нестрогому определению, липид — это гидрофобное органическое вещество, растворимое в органических растворителях; согласно строгому химическому определению, это гидрофобная или амфифильная молекула, полученная путём конденсации тиоэфиров или изопренов[3].

Границы определения

Используемое ранее определение липидов, как группы органических соединений, хорошо растворимых в неполярных органических растворителях (бензол, ацетон, хлороформ) и практически нерастворимых в воде, является слишком расплывчатым. Во-первых, такое определение вместо чёткой характеристики класса химических соединений говорит лишь о физических свойствах. Во-вторых, в настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной органической химии определение термина «липиды» основано на биосинтетическом родстве данных соединений — к липидам относят жирные кислоты и их производные[4]. В то же время в биохимии и других разделах биологии к липидам по-прежнему принято относить и гидрофобные или амфифильные вещества другой химической природы[5]. Это определение позволяет включать сюда холестерин, который вряд ли можно считать производным жирной кислоты.

Описание

Липиды — один из важнейших классов сложных молекул, присутствующих в клетках и тканях животных. Липиды выполняют самые разнообразные функции: снабжают энергией клеточные процессы, формируют клеточные мембраны, участвуют в межклеточной и внутриклеточной сигнализации. Липиды служат предшественниками стероидных гормонов, жёлчных кислот, простагландинов и фосфоинозитидов. В крови содержатся отдельные компоненты липидов (насыщенные жирные кислоты, мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты), триглицериды, холестерин, эфиры холестерина и фосфолипиды. Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов. Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином. Триглицериды, холестерин и фосфолипиды транспортируются в форме водорастворимых липопротеидов. Некоторые липиды используются для создания наночастиц, например, липосом. Мембрана липосом состоит из природных фосфолипидов, что определяет их многие привлекательные качества. Они нетоксичны, биодеградируемы, при определённых условиях могут поглощаться клетками, что приводит к внутриклеточной доставке их содержимого. Липосомы предназначены для целевой доставки в клетки препаратов фотодинамической или генной терапии, а также компонентов другого назначения, например, косметического[3].

Классификация липидов

Классификация липидов, как и других соединений биологической природы, — весьма спорный и проблематичный процесс. Предлагаемая ниже классификация хоть и широко распространена в липидологии, но является далеко не единственной. Она основывается, прежде всего, на структурных и биосинтетических особенностях разных групп липидов.

Простые липиды

Простые липиды — липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

Примеры жирных кислот: миристиновая (насыщенная жирная кислота) и миристолеиновая (мононенасыщенная кислота) имеют 14 атомов углерода

Сложные липиды

Сложные липиды — липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) другие химические элементы. Чаще всего: фосфор (Р), серу (S), азот (N).

Общее строение фосфолипидов
Заместители R1 и R² — остатки жирных кислот, X зависит от типа фосфолипида.

  • Полярные
    • Фосфолипиды — сложные эфиры многоатомных спиртов и высших жирных кислот, содержащие остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.
    • Гликолипиды — сложные липиды, образующиеся в результате соединения липидов с углеводами.
    • Фосфогликолипиды
    • Сфинголипиды — класс липидов, относящихся к производным алифатических аминоспиртов.
    • Мышьяколипиды

Оксилипиды

Строение

Молекулы простых липидов состоят из спирта, жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др.
Строение липидов зависит в первую очередь от пути их биосинтеза.

Биологические функции

Энергетическая (резервная) функция

Многие жиры используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г углеводов (4,1 ккал). Жировые отложения используются в качестве запасных источников питательных веществ, прежде всего животными, которые вынуждены носить свои запасы на себе. Растения чаще запасают углеводы, однако в семенах многих растений высоко содержание жиров (растительные масла добывают из семян подсолнечника, кукурузы, рапса, льна и других масличных растений).

Почти все живые организмы запасают энергию в форме жиров. Существуют две основные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий (почти такой же как у углеводородов нефти). Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более чем в два раза больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры — гидрофобные соединения, поэтому организм, запасая энергию в такой форме, не должен нести дополнительной массы воды необходимой для гидратации, как в случае с полисахаридами, на 1 г которых приходится 2 г воды. Однако триглицериды — это «более медленный» источник энергии, чем углеводы.

Жиры запасаются в форме капель в цитоплазме клетки. У позвоночных имеются специализированные клетки — адипоциты, почти полностью заполненные большой каплей жира. Также богатыми на триглицериды являются семена многих растений. Мобилизация жиров в адипоцитах и клетках прорастающих семян происходит благодаря ферментам липазам, которые расщепляют их до глицерина и жирных кислот.

У людей наибольшее количество жировой ткани находится под кожей (так называемая подкожная клетчатка), особенно в районе живота и молочных желез. Человеку с лёгким ожирением (15-20 кг триглицеридов) таких запасов может хватить для обеспечения себя энергией в течение месяца, в то время как всего запасного гликогена хватит более чем на сутки[6].

Функция теплоизоляции

Жир — хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). Но в то же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков) в качестве резервных запасов воды, так как вода — один из продуктов окисления жиров.

Структурная функция

Фосфолипиды составляют основу билипидного слоя клеточных мембран, холестерин — регулятор текучести мембран. У архей в состав мембран входят производные изопреноидных углеводородов. Воск образует кутикулу на поверхности надземных органов (листьев и молодых побегов) растений. Их также производят многие насекомые (так, пчёлы строят из них соты, а червецы и щитовки образуют защитные чехлы).

Все живые клетки окружены плазматическими мембранами, основным структурным элементом которых является двойной слой липидов (липидный бислой). В 1 мкм² биологической мембраны содержится около миллиона молекул липидов[7]. Все липиды, входящие в состав мембран, имеют амфифильные свойства: они состоят из гидрофильной и гидрофобной частей. В водной среде такие молекулы спонтанно образуют мицеллы и бислои в результате гидрофобных взаимодействий, в таких структурах полярные головы молекул обращены наружу к водной фазе, а неполярные хвосты — внутрь, такое же размещение липидов характерно для естественных мембран. Наличие гидрофобного слоя очень важно для выполнения мембранами их функций, поскольку он непроницаем для ионов и полярных соединений[6].

Основными структурными липидами, которые входят в состав мембран животных клеток, являются глицерофосфолипиды, в основном фосфатидилхолин и фосфатидилэтаноламин, а также холестерол, что увеличивает их непроницаемость. Отдельные ткани могут быть выборочно обогащены другими классами мембранных липидов, например нервная ткань содержит большое количество сфингофосфолипидов, в частности сфингомиелина, а также сфингогликолипидов. В мембранах растительных клеток холестерол отсутствует, однако встречается другой стероид — эргостерол. Мембраны тилакоидов содержат большое количество галактолипидов, а также сульфолипиды.

Регуляторная

Некоторые липиды играют активную роль в регулировании жизнедеятельности отдельных клеток и организма в целом. В частности, к липидам относятся стероидные гормоны, секретируемые половыми железами и корой надпочечников. Эти вещества переносятся кровью по всему организму и влияют на его функционирование.

Среди липидов есть также и вторичные посредники — вещества, участвующие в передаче сигнала от гормонов или других биологически активных веществ внутри клетки. В частности фосфатидилинозитол-4,5-бифосфат (ФИ (4,5) Ф2) задействован в сигнализировании при участии G-белков, фосфатидилинозитол-3,4,5-трифосфат инициирует образование супрамолекулярных комплексов сигнальных белков в ответ на действие определённых внеклеточных факторов, сфинголипиды, такие как сфингомиелин и церамид, могут регулировать активность протеинкиназы.

Производные арахидоновой кислоты — эйкозаноиды — являются примером паракринных регуляторов липидной природы. В зависимости от особенностей строения эти вещества делятся на три основные группы: простагландины, тромбоксаны и лейкориены. Они участвуют в регуляции широкого спектра физиологических функций, в частности эйкозаноиды необходимы для работы половой системы, для индукции и прохождения воспалительного процесса (в том числе обеспечение таких его аспектов как боль и повышенная температура), для свёртывания крови, регуляции кровяного давления, также они могут быть задействованы в аллергических реакциях[6].

Защитная (амортизационная)

Толстый слой жира защищает внутренние органы многих животных от повреждений при ударах (например, сивучи при массе до тонны могут прыгать в воду со скал высотой 20-25 м[источник не указан 2310 дней]).

Увеличения плавучести

Самые разные организмы — от диатомовых водорослей до акул — используют резервные запасы жира как средство снижения среднего удельного веса тела и, таким образом, увеличения плавучести. Это позволяет снизить расходы энергии на удержание в толще воды.

Липиды в диете человека

Среди липидов в диете человека преобладают триглицериды (нейтральные жиры), они являются богатым источником энергии, а также необходимы для всасывания жирорастворимых витаминов. Насыщенными жирными кислотами богата пища животного происхождения: мясо, молочные продукты, а также некоторые тропические растения, такие как кокосы. Ненасыщенные жирные кислоты попадают в организм человека в результате употребления орехов, семечек, оливкового и других растительных масел. Основными источниками холестерола в рационе является мясо и органы животных, яичные желтки, молочные продукты и рыба. Однако около 85 % процентов холестерола в крови синтезируется печенью[8].
Организация American Heart Association рекомендует употреблять липиды в количестве не более 30 % от общего рациона, сократить содержание насыщенных жирных кислот в диете до 10 % от всех жиров и не принимать более 300 мг (количество, содержащееся в одном желтке) холестерола в сутки. Целью этих рекомендаций является ограничение уровня холестерола и триглицеридов в крови до 20 мг / л.[8]

Суточная потребность взрослого человека в липидах — 70—145 граммов.

Незаменимые жирные кислоты

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать неспособна. Поэтому они называются незаменимыми, к таким в частности относятся ω-3- (линоленовая) и ω-6- (линолевая) полиненасыщенные жирные кислоты, они содержатся в основном в растительных жирах. Линоленовая кислота является предшественником для синтеза двух других ω-3-кислот: эйозапентаэноевой (EPA) и докозагексаэноевой (DHA)[6]. Эти вещества необходимы для работы головного мозга, и положительно влияют на когнитивные и поведенческие функции[9].

Важно также соотношение ω-6\ω-3-жирных кислот в рационе: рекомендуемые пропорции лежат в пределах от 1:1 до 4:1. Однако исследования показывают, что большинство жителей Северной Америки употребляют в 10-30 раз больше ω-6 жирных кислот, чем ω-3. Такое питание связано с риском возникновения сердечно-сосудистых заболеваний. Зато «средиземноморская диета» считается значительно здоровее, она богата на линоленовую и другие ω-3-кислоты, источником которых являются зелёные растения (например листья салата), рыба, чеснок, целые злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую жирные кислоты ω-3, рекомендуется принимать рыбий жир[6][9].

Транс-ненасыщенные жирные кислоты

Большинство природных жиров содержат ненасыщенные жирные кислоты с двойными связями в цис-конфигурации. Если пища, богатая такими жирами, долгое время находится в контакте с воздухом, она горчит. Этот процесс связан с окислительным расщеплением двойных связей, в результате которого образуются альдегиды и карбоновые кислоты с меньшей молекулярной массой, часть из которых является летучими веществами.

Для того чтобы увеличить срок хранения и устойчивость к высоким температурам триглицеридов с ненасыщенными жирными кислотами применяют процедуру частичной гидрогенизации. Следствием этого процесса является превращение двойных связей в одинарные, однако побочным эффектом также может быть переход двойных связей из цис- в транс-конфигурацию. Употребление так называемых «транс-жиров» влечёт повышение содержания липопротеинов низкой плотности («плохой» холестерол) и снижение содержания липопротеинов высокой плотности («хороший» холестерол) в крови, что приводит к увеличению риска возникновения сердечно-сосудистых заболеваний, в частности коронарной недостаточности. Более того «транс-жиры» способствуют воспалительным процессам.

См. также

Примечания

  1. 1 2 3 Липиды // Большой энциклопедический словарь.
  2. ↑ Липиды / Л. Д. Бергельсон // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  3. 1 2 Народицкий Борис Савельевич, Ширинский Владимир Павлович, Нестеренко Людмила Николаевна. Липид (неопр.). Роснано. Проверено 8 марта 2012. Архивировано 23 июня 2012 года.
  4. ↑ 2ai2  (недоступная ссылка с 21-05-2013 [2079 дней] — историякопия)
  5. ↑ biochem/index.htm  (недоступная ссылка с 21-05-2013 [2079 дней] — историякопия)
  6. 1 2 3 4 5 Nelson D.L., Cox M.M. Lehninger Principles of Biochemistry. — 5th. — W. H. Freeman, 2008. — ISBN 978-0-7167-7108-1.
  7. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. — 5th. — Garland Science, 2007. — ISBN 978-0-8153-4105-5.
  8. 1 2 Marieb EN, Hoehn K. Human Anatomy & Physiology. — 7th. — Benjamin Cummings, 2006. — ISBN 978-0805359091.
  9. 1 2 Omega-3 fatty acids

Литература

  • Липиды // Большая российская энциклопедия. Том 17. — М., 2010. — С. 550—551.
  • Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;
  • Маркман А. Л., Химия липидов, в. 1—2, Таш., 1963—70;
  • Тютюнников Б. Н., Химия жиров, М., 1966;
  • Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.
  • Julian N. Kanfer and Sen-itiroh Hakomori, Sphingolipid Biochemistry, vol. 3 of Handbook of Lipid Research (1983)
  • Dennis E. Vance and Jean E. Vance (eds.), Biochemistry of Lipids and Membranes (1985).
  • Donald M. Small, The Physical Chemistry of Lipids, vol. 4 of Handbook of Lipid Research (1986).
  • Robert B. Gennis, Biomembranes: Molecular Structure and Function (1989)
  • Gunstone, F. D., John L. Harwood, and Fred B. Padley (eds.), The Lipid Handbook (1994).
  • Charles R. Scriver, Arthur L. Beaudet, William S. Sly, and David Valle, The Metabolic and Molecular Bases of Inherited Disease (1995).
  • Gunstone, F. D. Fatty acids and lipid chemistry. — London: Blackie Academic and Professional, 1996. 252 pp.
  • Robert M. Bell, John H. Exton, and Stephen M. Prescott (eds.), Lipid Second Messengers, vol. 8 of Handbook of Lipid Research (1996).
  • Christopher K. Mathews, K.E. van Holde, and Kevin G. Ahern, Biochemistry, 3rd ed. (2000).
  • Chapter 12 in «Biochemistry» by Jeremy M. Berg, John L. Tymoczko and Lubert Stryer (2002) W. H. Freeman and Co.
  • Alberts, B., et al. (2004) «Essential Cell Biology, 2nd Edition.» Garland Science. ISBN 0-8153-3480-X
  • Solomon, Eldra P., et. al. (2005) «Biology, 7th Edition.» Thomson, Brooks/Cole.
  • «Advanced Biology — Principles and Applications.» C.J. Clegg and D.G. Mackean. ISBN 0-7195-7670-9
  • Georg Löffler, Petro E. Petrides: Biochemie und Pathobiochemie. Springer, Berlin 2003, ISBN 3-540-42295-1
  • Florian Horn, Isabelle Moc, Nadine Schneider: Biochemie des Menschen. Thieme, Stuttgart 2005, ISBN 3-13-130883-4
  • Charles E. Mortimer, Ulrich Müller: Chemie. Thieme, Stuttgart 2003, ISBN 3-13-484308-0
  • Fahy E. et al. A comprehensive classification system for lipids // J. Lipid. Res. 2005. V. 46, № 5. P. 839—861.

wikiredia.ru

строение и обмен жиров и липоидов

16

Вопросы:

1. Химическое
строение и биологическая роль жиров и
липоидов.

2. Переваривание
и всасывание жиров.

3. Катаболизм
жиров.

4. Синтез жиров.

1. Химическое строение и биологическая
роль жиров и липоидов.

Жиры или липиды – это группа разнообразных
по строению веществ, обладающих
одинаковыми физико-химическими
свойствами: они не растворимы в воде
(гидро­фобность), но хорошо растворимы
в органических (неполярных) растворителях
(бензол, толуол, бензин, гексан, хлороформ,
метиловый и этиловый спирт и др.)

Жиры делятся на две группы – собственно
жиры или липиды и жироподобные вещества
или липоиды.

Липоиды (lipoida;липо-+ греч. -eides подобный) (гр. lipos жир + eidos вид)
– устаревшее общее название жироподобных
веществ природного происхождения:
фосфатидов, стеринов, сфинголипидов и
восков, которые являются структурными
компонентами клеточных мембран; в
настоящее время относятся к липидам.

К липидам относят большую группу
содержащихся в живых клетках органических
веществ с различным строением и
некото­рыми общими физико-химическими
свойствами. Такими общими свойствами
липидов являются их нерастворимость в
воде (гидро­фобность) и растворимость
в неполярных растворителях: ацетоне,
бензоле, хлороформе, метиловом и этиловом
спиртах и др.

В составе липидов
обнаруженымногочисленные и
разнообразные структурные компоненты:
высшие жирные кислоты, спирты, альдегиды,
углеводы, азотистые основания,
аминокислоты, фос­форная кислота и
др. Эти компоненты могут быть связаны
между собой различными связями:
сложноэфирной, простой эфирной,
гли­козидвой, амидной и др. Поэтому
до настоящего времени не суще­ствует
строгой, в химическом смысле, единой
классификации липидов.

Молекула жира состоит
изглицерина и трех остатков жирных
кислот
, соединенных сложноэфирной
связью. Это так называемыеистинные
жиры или триглицериды
.

CH2OH

|

CHOH

|

CH2OH

Глицерин

Глицериды (ацилглицеролы).
Глицериды (ацилглицерины, или
ацилглицеролы ) представляют собой
сложные эфиры трехатомного спирта
глицерина и высших жирных кислот. Если
жирными кислотами этерифицированы все
три гидроксильные группы глицерина
(ацильные радикалы R1, R2и R3
могут быть одинаковы или различны),
то такое соединение называют триглицеридом
(триацилглицерол), если две – диглицеридом
(диацилглицерол) и, наконец, если
этерифицирована одна группа –
моноглицеридом (моноацилглицерол):

Наиболее распространенными являются
триглицериды, часто называемые
нейтральными жирамиили просто жирами. Нейтральные жиры
находятся в организме либо в форме
протоплазматического жира, являющегося
структурным компонентом клеток, либо
в форме запасного, резервного, жира.
Роль этих двух форм жира в организме
неодинакова. Протоплазматический жир
имеет постоянный химический состав и
содержится в тканях в определенном
количестве, не изменяющемся даже при
патологическом ожирении, в то время как
количество резервного жира подвергается
большим колебаниям.

Жирные кислоты, входящие в состав жиров
делятся на предельные и непредельные.
Первые не имеют двойных связей и
называются ещёнасыщенными, а вторые
имеют двойные связи и называютсяненасыщенными.

studfiles.net

Липиды, жиры и липоиды (фосфолипиды, воски, стероиды, липoпротеиды и гликолипиды). Функции липидов

Липиды, жиры и липоиды (фосфолипиды, воски, стероиды, липoпротеиды и гликолипиды). Функции липидов

Липиды, жиры и липоиды (фосфолипиды, воски, стероиды, липoпротеиды и гликолипиды). Функции липидов

Липиды

Липиды (от греч. липос – жир) включают жиры и жироподобные вещества. Содержатся почти во всех клетках — от 3 до 15%, а в клетках подкожной жировой клетчатки их до 50 %.

Особенно много липидов в печени, почках, нервной ткани (до 25 %), крови, семенах и плодах некоторых растений (29-57%). Липиды имеют разную структуру, но общие некоторые свойства. Эти органические вещества не растворяются в воде, но хорошо растворяются в органических растворителях: эфире, бензоле, бензине, хлороформе и др. Это свойство обусловлено тем, что в молекулах липидов преобладают неполярные и гидрофобные структуры. Все липиды можно условно разделить на жиры и липоиды.

Жиры

Наиболее распространенными являются жиры (нейтральные жиры, триглицериды), представляющие собой сложные соединения трехатомного спирта глицерина и высокомолекулярных жирных кислот. Остаток глицерина — это вещество, хорошо растворимое в воде. Остатки жирных кислот — это углеводородные цепочки, почти нерастворимые в воде. При попадании капли жира в воду к ней обращается глицериновая часть молекул, а цепочки жирных кислот выступают из воды. В состав жирных кислот входит карбоксильная группа (-СООН). Она легко ионизируется. С ее помощью молекулы жирных кислот соединяются с другими молекулами.

Все жирные кислоты делятся на две группы — насыщенные и ненасыщенные. Ненасыщенные жирные кислоты не имеют двойных (ненасыщенных) связей, насыщенные — имеют. К насыщенным жирным кислотам относятся пальмитиновая, масляная, лауриновая, стеариновая и т. п. К ненасыщенным — олеиновая, эруковая, линолевая, линоленовая и т. п. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением.

Жиры, которые содержат насыщенные жирные кислоты, имеют высокую температуру плавления. По консистенции они, как правило, твердые. Это жиры многих животных, кокосовое масло. Жиры, которые имеют в своем составе ненасыщенные жирные кислоты, имеют низкую температуру плавления. Такие жиры преимущественно жидкие. Растительные жиры жидкой консистенции нарываются маслами. К этим жирам относят рыбий жир, подсолнечное, хлопчатниковое, льняное, конопляное масла и др.

Липоиды

Липоиды могут образовывать сложные комплексы с белками, углеводами и другими веществами. Можно выделить такие соединения:

  1. Фосфолипиды. Они являются сложными соединениями глицерина и жирных кислот и содержат остаток фосфорной кислоты. Молекулы всех фосфолипидов имеют полярную головку и неполярный хвост, образованный двумя молекулами жирных кислот. Основные компоненты клеточных мембран.
  2. Воски. Это сложные липиды, состоящие из более сложных спиртов, чем глицерин, и жирных кислот. Выполняют защитную функцию. Животные и растения используют их как водоотталкивающие и защищающие от высыхания вещества. Воски покрывают поверхность листьев растений, поверхность тела членистоногих, живущих на суше. Воски выделяют сальные железы млекопитающих, копчиковая железа птиц. Из воска пчелы строят соты.
  3. Стероиды (от греч. стереос – твердый). Для этих липидов характерно наличие не углеводных, а более сложных структур. К стероидам относятся важные вещества организма: витамин D, гормоны коры надпочечных желез, половых желез, желчные кислоты, холестерин.
  4. Липoпротеиды и гликолипиды. Липопротеиды состоят из белков и липидов, глюкопротеиды – из липидов и углеводов. Гликолипидов много в составе тканей мозга и нервных волокон. Липопротеиды входят в состав многих клеточных структур, обеспечивают их прочность и стабильность.

Функции липидов

Жиры являются главным типом запасающих веществ. Они запасаются в семени, подкожной жировой клетчатке, жировой ткани, жировом теле насекомых. Запасы жиров значительно превышают запасы углеводов.

Структурная. Липиды входят в состав клеточных мембран всех клеток. Упорядоченное размещение гидрофильных и гидрофобных концов молекул имеет большое значение для избирательной проницаемости мембран.

Энергетическая. Обеспечивают 25-30% всей энергии, необходимой организму. При распаде 1 г жира выделяется 38,9 кДж энергии. Это почти вдвое больше в сравнении с углеводами и белками. У перелетных птиц и животных, впадающих в спячку, липиды – единственный источник энергии.

Защитная. Слой жира защищает нежные внутренние органы от ударов, сотрясений, повреждений.

Теплоизоляционная. Жиры плохо проводят тепло. Под кожей некоторых животных (особенно морских) они откладываются и образуют слои. Например, кит имеет слой подкожного жира около 1 м, что позволяет ему жить в холодной воде.

У многих млекопитающих есть специальная жировая ткань, которая называется бурым жиром. Она имеет такую окраску, потому что богата митохондриями красно-бурой окраски, так как в них содержатся железосодержащие белки. В этой ткани вырабатывается тепловая энергия, необходимая животным в условиях низких

температур. Бурый жир окружает жизненно важные органы (сердце, головной мозг и т. п.) или лежит на пути крови, которая к ним приливает, и, таким образом, направляет тепло к ним.

Поставщики эндогенной воды

При окислении 100 г жиров выделяется 107 мл воды. Благодаря этой воде существует много животных пустынь: верблюды, тушканчики и т. п. Животные во время спячки также вырабатывают эндогенную воду из жиров.

Жирообразное вещество покрывает поверхность листьев, не дает им намокать во время дождей.

Некоторые липиды имеют высокую биологическую активность: ряд витаминов (A, D и т. п.), некоторые гормоны (эстрадиол, тестостерон), простагландины.

xn—-9sbecybtxb6o.xn--p1ai

Липиды и липоиды – Липиды и липоиды.Биологическая роль в организме.Классификация

Отправить ответ

avatar
  Подписаться  
Уведомление о