Обмен веществ в живых организмах

  1. Главная
  2. Природа
  3. Обмен веществ в живых организмах
Елена Голец 2709 Обмен веществ в живых организмах является основным в существовании белковых тел, и этот способ существования состоит в самообновлении химических составных частей живых организмов.

Что такое жизнь

На потемневших от времени кусках пергамента, на глиняных табличках и листах папируса находят записанные древними мудрецами мысли о том, что такое жизнь и как она возникла. Листы папируса и пергамента. Изображению и объяснению жизни немало строк посвятили писатели и поэты. В тайны ее на протяжении многих столетий упорно и последовательно проникают ученые. Из одних лишь определений, что такое жизнь, можно было бы составить толстую книгу. Во многих высказываниях древних содержались верные наблюдения, отражающие многообразие проявлений жизни, но не было главного —
общего признака
, характерного для любой ее формы. Этим признаком, присущим всем живым организмам — от простейших микробов до самых высокоорганизованных существ и является обмен веществ в живых организмах, постоянное самообновление составных частей тела организма. Современные достижения биохимии, физиологии и других наук полностью подтвердили правильность этого утверждения. Все другие свойства жизни, например, раздражимость, то-есть способность отвечать на воздействия среды, рост, развитие, размножение и другие, — лишь различные проявления жизни, вытекающие из основного ее свойства — самообновления.

Самообновление живых организмов

Самообновление живых организмов представляет собой два одновременно происходящих в организме процесса — разрушение имеющегося и созидание нового органического вещества. Вещества тела любого организма беспрерывно распадаются и в то же время в нем идет возникновение новых веществ, подобных разрушившимся. Обе эти стороны жизнедеятельности организма — разрушительная и созидательная — неразрывно связаны между собой и составляют
единый процесс жизни
. Разрушение и созидание наблюдаются всюду и в неживой природе. Это связано с деятельностью воды, ветра, ледников. Например, в результате выветривания гранитная скала постепенно превращается в щебень и даже в песок. Из этого материала впоследствии могут образоваться новые твердые породы, но они уже не будут прежним гранитом. Совсем иное представляет собой разрушение в живом организме. Здесь разрушение вещества является источником возникновения нового органического вещества, то-есть представляет основное условие сохранения жизни этого организма. Если прекратится распад, одновременно прекратится и образование нового живого вещества, наступит смерть.

Диссимиляция и ассимиляция

Разрушение и распад, происходящие в теле живого организма, носят название диссимиляции, а противоположный процесс — образование нового вещества — называется ассимиляцией. В
диссимиляции и ассимиляции
, или, как говорят, в обмене веществ и энергии, и заключается сущность жизни. Ведь организм что-то всегда получает из окружающей среды и  что-то постоянно ей отдает. Этим живое качественно отличается от неживого, ибо подобного обмена веществ нет ни у одного неживого тела. Рассмотрим более подробно взаимосвязь между этими двумя сторонами самого существенного процесса жизни —самообновления. Диссимиляция — это в конечном итоге соединение органических веществ, входящих в состав живого тела, с кислородом, то-есть окисление, в результате которого освобождается скрытая в них потенциальная энергия. Поэтому диссимиляцию иногда сравнивают с горением. Но это не одно и то же. Горение также есть окисление, но происходит оно сравнительно быстро, причем почти вся химическая энергия горящего тела из скрытого состояния непосредственно переходит в теплоту. Освобождающаяся при диссимиляции энергия может проявляться в виде
энергии движения
, в различных химических реакциях, в результате которых она переходит из одной формы в другую, может накапливаться «про запас», превращаться даже в электрическую энергию. При этом одни процессы протекают быстрее, другие медленнее. И лишь в конечном итоге все виды энергии переходят в тепловую (здесь, как и всюду, действителен закон сохранения вещества, открытый Ломоносовым). Ассимиляция, то-есть преобразование вещества пищи в тело организма, происходит за счет энергии, освобождающейся при диссимиляции. Такова суть самообновления организма. Где же происходит этот процесс? Самообновление осуществляется во всех тех ча

libtime.ru

Метаболизм. Пластический и Энергетический обмены. Автотрофы и Гетеротрофы

Обмен веществ (метаболизм) и превращение энергии в организме

Метаболизм. Пластический и Энергетический обмены. Автотрофы и Гетеротрофы

Метаболизм (обмен веществ)

Метаболизм, или обмен веществ, – это совокупность биохимических процессов и процессов жизнедеятельности клетки. Обеспечивает существование живых организмов. Различают процессы ассимиляции (анаболизма) и диссимиляции (катаболизма). Эти процессы являются разными сторонами единого процесса обмена веществ и превращения энергии в живых организмах.

Ассимиляция

Ассимиляция – это процессы, связанные с поглощением, усвоением и накоплением химических веществ, которые используются для синтеза необходимых для организма соединений.

Пластический обмен

Пластический обмен – это совокупность реакций синтеза, которые обеспечивают возобновление химического состава, рост клеток.

Диссимиляция

Диссимиляция – это процессы, которые связаны с распадом веществ.

Энергетический обмен

Энергетический обмен – это совокупность реакций расщепления сложных соединений с выделением энергии. Организмы из окружающей среды в процессе жизнедеятельности в определенных формах поглощают энергию. Потом они возвращают в другой форме ее эквивалентное количество.

Не всегда процессы ассимиляции уравновешены с процессами диссимиляции. Накопление веществ и рост в развивающихся организмах обеспечиваются процессами ассимиляции, поэтому они преобладают. Процессы диссимиляции преобладают при недостатке питательных веществ, интенсивной физической работе, старении.

Процессы ассимиляции и диссимиляции тесно связаны с типами питания организмов. Основным источником энергии для живых организмов Земли является солнечный свет. Он опосредованно или непосредственно удовлетворяет их энергетические потребности.

Автотрофы

Автотрофы (от греч. аутос – сам и трофе – пища, питание) – это организмы, способные синтезировать органические соединения из неорганических с использованием определенного вида энергии. Различают фототрофы и хемотрофы.

Фототрофы

Фототрофы (от греч. фотос – свет) – организмы, которые для процессов синтеза органических соединений из неорганических используют энергию света. К ним принадлежат некоторые прокариоты (фотосинтезирующие серобактерии и цианобактерии) и зеленые растения.

Хемотрофы

Хемотрофы (от греч. хемиа – химия) для синтеза органических соединений из неорганических используют энергию химических реакций. К ним относятся некоторые прокариоты (железобактерии, серобактерии, азотфиксирующие и т. п.). Автотрофные процессы относятся больше к процессам ассимиляции.

Гетеротрофы

Гетеротрофы (от греч. гетерос – другой) – это организмы, которые синтезируют собственные органические соединения из готовых органических соединений, синтезированных другими организмами. К ним принадлежат большинство прокариот, грибы, животные. Для них источником энергии являются органические вещества, которые они получают с пищей: живые организмы, их остатки или продукты жизнедеятельности. Основные процессы гетеротрофных организмов –

распад веществ – основаны на процессах диссимиляции.

Энергия в биологических системах используется для обеспечения в организме разных процессов: тепловых, механических, химических, электрических и т. п. Часть энергии во время реакций энергетического обмена рассеивается в виде теплоты, часть ее запасается в макроэргических химических связях определенных органических соединений. Универсальным таким веществом является аденозинтрифосфорная кислота АТФ. Она является универсальным химическим аккумулятором энергии в клетке.

Под действием фермента отщепляется один остаток фосфорной кислоты. Тогда АТФ превращается в аденозиндифосфат – АДФ. При этом выделяется около 42 кДж энергии. При отщеплении двух остатков фосфорной кислоты образуется аденозинмонофосфат – АТФ (выделяется 84 кДж энергии). Может расщепляться молекула АМФ. Таким образом, во время расщепления АТФ выделяется большое количество энергии, которая используется для синтеза необходимых организму соединений, поддержания определенной температуры тела и т. п.

Остается окончательно не выясненной природа макроэргических связей АТФ, хотя они превосходят по энергоемкости обычные связи в несколько раз.

xn—-9sbecybtxb6o.xn--p1ai

Обмен веществ и энергии в живых организмах

Обмен веществ.

В живых организмах любой процесс сопровождается передачей энергии. Энергию определяют как способность совершать работу. Специальный раздел физики, который изучает свойства и превращения энергии в различных системах, называется термодинамикой. Под термодинамической системой понимают совокупность объектов, условно выделенных из окружающего пространства.

Обмен веществ и энергии — это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду.

Все происходящие в организме преобразования вещества и энергии объединены общим названием — метаболизм (обмен веществ). На клеточном уровне эти преобразования осуществляются через сложные последовательности реакций, называемые путями метаболизма, и могут включать тысячи разнообразных реакций. Эти реакции протекают не хаотически, а в строго определенной последовательности и регулируются множеством генетических и химических механизмов. Метаболизм можно разделить на два взаимосвязанных, но разнонаправленных процесса: анаболизм (ассимиляция) и катаболизм (диссимиляция).

Анаболизм — это совокупность процессов биосинтеза органических веществ (компонентов клетки и других структур органов и тканей). Он обеспечивает рост, развитие, обновление биологических структур, а также накопление энергии (синтез макроэргов). Анаболизм заключается в химической модификации и перестройке поступающих с пищей молекул в другие более сложные биологические молекулы. Например, включение аминокислот в синтезируемые клеткой белки в соответствии с инструкцией, содержащейся в генетическом материале данной клетки.

Катаболизм — это совокупность процессов расщепления сложных молекул до более простых веществ с использованием части из них в качестве субстратов для биосинтеза и расщеплением другой части до конечных продуктов метаболизма с образованием энергии. К конечным продуктам метаболизма относятся вода (у человека примерно 350 мл в день), двуокись углерода (около 230 мл/мин), окись углерода (0,007 мл/мин), мочевина (около 30 г/день), а также другие вещества, содержащие азот (примерно б г/день).

Катаболизм обеспечивает извлечение химической энергии из содержащихся в пище молекул и использование этой энергии на обеспечение необходимых функций. Например, образование свободных аминокислот в результате расщепления поступающих с пищей белков и последующее окисление этих аминокислот в клетке с образованием СО2, и Н2О, что сопровождается высвобождением энергии.

Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста (в детском возрасте преобладает анаболизм, у взрослых обычно наблюдается равновесие, в старческом возрасте преобладает катаболизм), состояния здоровья, выполняемой организмом физической или психоэмоциональной нагрузки.

Цикл Кребса.

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Кребсом. Он первым постулировал значение данного цикла, который источником которого является гликолитическое превращение углеводов. В дальнейшем было показоно, что цикл Кребса является тем центром, где сходятся практически все метаболические

mirznanii.com

Обмен веществ и энергии в живых организмах

    В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды НгО и углекислого газа (диоксида углерода) СОг. При окислении 100 г жиров образуется 107 г воды, а при окислении 100 г углеводов — 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой и не потребляют ее извне. Примером является ковровая моль. Не нуждаются в воде в природных условиях тушканчики, которые водятся в Европе и Азии, и американская кенгуровая крыса. Многие знают, что в условиях исключительно жаркого и сухого климата верблюд обладает феноменальной способностью долгое время обходиться без пищи и воды. Например, при массе 450 кг за восьмидневный переход по пустыне верблюд может потерять 100 кг в массе, а потом восстановить их без последствий для организма. Установлено, что его организм использует воду, содержащуюся в жидкостях тканей и связок, а не крови, как это происхо- [c.8]
    Если исключен обмен теплотой между системой и окружающей средой, то система называется адиабатически изолированной. Система называется закрытой (замкнутой), если между ней и окружающей средой возможны все виды взаимодействия, кроме обмена веществом. Примером закрытой системы является закрытый сосуд с веществом, баллон с газом и т. п. Открытой называется система, которая может обмениваться с окружающей средой и веществом и энергией. Примером открытой системы является живой организм. [c.19]

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]

    Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]

    Обмен веществ и энергии в живых организмах > [c.16]

    В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и биохимию микроорганизмов. Несмотря на биохимическое единство всего живого, существуют и коренные различия как химического состава, так и обмена веществ в животных и растительных организмах. Обмен веществ, или метаболизм,—это совокупность всех химических реакций, протекающих в организме и направленных на сохранение и самовоспроизведение живых систем. Известно, что растения строят сложные органические вещества (углеводы, жиры, белки) из таких простых, как вода, углекислый газ и минеральные вещества, причем энергия, необходимая для этой синтетической деятельности, образуется за счет поглощения солнечных лучей в процессе фотосинтеза. Животные организмы, напротив, нуждаются в пище, состоящей не только из воды и минеральных компонентов, но содержащей сложные вещества органической природы белки, жиры, углеводы. У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счет химической энергии, освобождающейся при распаде (окислении) сложных органических соединений. [c.15]

    Различные клетки многоклеточных организмов отличаются друг от друга, однако каждая растительная клетка имеет общие черты строения и в каждой находятся общие внутриклеточные структуры, выполняющие аналогичные функции. Каждая растительная клетка состоит из цитоплазмы и ядра. Цитоплазма окружена клеточной оболочкой, а ядро — ядерной оболочкой. Цитоплазма — это очень сложная коллоидная система. Дисперсной средой ее служит вода, в которой растворены минеральные соли, сахара, аминокислоты, органические кислоты и многие другие вещества. Во взвешенном состоянии в цитоплазме находятся различные включения и большое число органелл, или структур, разного состава и размера. В

www.chem21.info

2.5 Обмен веществ и превращения энергии

Видеоурок: Обмен веществ и превращения энергии. Стадии энергетического обмена

Лекция: Обмен веществ и превращения энергии — свойства живых организмов

Обмен веществ

Обмен веществ (метаболизм) – это химические процессы, являющиеся жизнью.

 

Базовой основой процесса жизни является синтез собственных веществ из продуктов расщепления полученных. Рассматриваются две разновидности метаболитических процессов:


  • пластический обмен – анаболизм или синтез, при котором происходит накопление потенциальной энергии в виде химических связей.

  • энергетический обмен – катаболизм, представляющий собой разложение веществ, с выделением энергии при разрыве связей.

Обе группы взаимосвязаны. Для синтеза нужна энергия, ее организм получает посредством катализа (расщепления).

Получение энергии посредством катализа

Жизнь возможна за счет использования химической и световой энергии. Автотрофные растения синтезируют глюкозу с помощью солнечного света из воды и углекислого газа. Многие бактерии живут за счет хемосинтеза – процесса окисления неорганических веществ, используя серные, азотные, углеродные соединения. Грибы и животные получают энергию и материю для синтеза, потребляя созданные растениями сахара и другие органические соединения. Некоторые организмы могут иметь смешанные виды питания и являться миксотрофами – эвглена, росянка.

Очень важна роль ферментов – они ускоряют химические реакции до необходимых для поддержания жизнедеятельности скоростей, в сотни тысяч раз. Без них жизнь невозможна, из-за низких скоростей химических реакций. Ферменты имеют белковую структуру, каждый является катализатором одного вида реакций. Свойства ферментов определяются их структурой – в молекуле белка-фермента имеется активный центр, взаимодействующий с целевыми химическими веществами.


Уровень активности ферментов определяется различными параметрами:

  • Температурой. С ее ростом активность повышается.

  • Кислотностью среды. Для работы большей части ферментов необходима нейтральная среда, кислая — предпочтительна для пищеварения млекопитающих, щелочная — для ферментов секрета поджелудочной железы.

  • Количеством субстрата.

Названия белков-ферментов оканчиваются на -аза.


Особенностью энергетического обмена, характерной для аэробных организмов является его поэтапное прохождение. Выделяется три этапа:

  • Подготовительный. Это пищеварение, происходящее в пищеварительных вакуолях лизосом простейших, в ЖКТ у многоклеточных. Функционально – это процесс разложения макромолекул на мономеры.

  • Гликолиз. Происходит в цитоплазме. Это бескислородное превращение глюкозы с ее окислением. Происходит несколько каскадных химических реакций. В их результате из глюкозы получается 2 молекулы пировиноградной кислоты (пирувата) и 2 молекулы АТФ. Частично выделяющаяся в ходе реакций энергия запасается обратно в АТФ, часть ее – в виде тепла рассеивается в пространство.

  • Кислородный этап. Это — каскадный двуступенчатый процесс: цикл Кребса с последующим окислительным фосфорилированием (дыханием). Пируват на этом этапе превращается в углекислый газ и воду с образованием 34 молекул АТФ, а затем образованием еще 2 при дыхании. С химической точки зрения энергетический обмен выглядит как: С6Н12O6 + 6O2 = 6СO2 + 6Н2O + 38АТФ.

Другие виды получения энергии


Брожение. Один из основных способов получения энергии простейшими и некоторыми клетками высших животных. При этом, полученный из глюкозы пируват растительными клетками включается в спиртовое брожение, распадаясь на углекислый газ и спирт. У животных пируват вступает в молочнокислое брожение – он превращается в молочную кислоту. В условиях недостатка кислорода мышечные клетки прибегают к менее эффективному, но более быстрому способу синтеза АТФ. Излишки молочной кислоты, не успевающие включиться в метаболизм из-за недостатка кислорода вызывают боль в мышцах. Существуют еще такие виды брожения, как метановое (способ очистки сточных вод), маслянокислое, уксуснокислое.

Фотосинтез. Был доказан в 1630 г голландцем ван Гельмонтом, который обнаружил самостоятельное создание растениями питательных веществ. Изменение состава воздуха растениями доказано в 1771 г Д.Пристли. Сейчас наука рассматривает фотосинтез, как процессы синтеза клетками зеленых растений глюкозы из воды и углекислого газа под воздействием солнечного света.

Хлорофилл представляет собой сложную молекулу, состоящую из, примерно, десятка ароматических пятичленных колец, с магниевыми комплексами.


Достаточно изученная световая фаза фотосинтеза разделяется на несколько этапов:

  • полученный извне фотон становится причиной возбуждения молекулы хлорофилла, ее электроны сдвигаются на более высокий уровень;
    электроны подхватываются ионизированным никотинамиддифосфатом, что приводит к его востановлению;

  • происходит фотолиз воды — с разложением на ионизированный водород, 4 электрона, молекулу кислорода.

Эта первичная фаза происходит на складчатых образованиях внутреннего мембранного слоя — тилакоидах хлоропластов.Стопки мембран внутри пластиды называются граны.


Во время темновой фотосинтетической фазы между гранами внутри хлоропласта (в строме) производится синтез молекул углеводов, с использованием энергии АТФ никотиамиддифосфата, а также углекислого газа.

Хемосинтез. В условиях отсутствия питательных веществ и солнечного света обитают многие виды хемосинтезирующих бактерий:

  • железобактерии – получают энергию, увеличивая степень окисления железа — от двух до трехвалентного.

  • водородные – превращают в воду молекулярный водород.

  • тионовые – живут за счет окисления тиосульфатов и других соединений серы, а также ее молекулярной формы до серной кислоты. Многие из них могут обитать в экстремально кислых средах, индифферентны к высоким концентрациям тяжелых металлов, выщелачивая их из руд.

  • серобактерии – превращают сероводород в чистую серу и соли серной кислоты;
    нитрифицирующие – превращают аммиак в азотную и азотистую кислоты.


Хемосинтетики являются важным звеном круговорота веществ.


cknow.ru

Обмен веществ и энергии в живых организмах

Пермская Государственная Медицинская Академия

 

 

 

 

 

 

Обмен веществ и энергии

в живых организмах.

 

 

 

                                                стомат. факультета

                                                 102 группы

                                                 Бояршинова Анна Андреевна

 

 

 

                                Проверил   преподаватель: 

                                                Поносов Виктор Леонидович   

 

 

 

 

 

 

 

                               Пермь, 2001г.                       

                                                                            

 

Обмен веществ.

                   

     В живых организмах любой процесс сопровождается передачей энергии. Энергию определяют как способность совершать работу. Специальный раздел физики, который изучает свойства и превращения энергии в различных системах, называется термодинамикой. Под термодинамической системой понимают совокупность объектов, условно выделенных из окружающего пространства.

Обмен веществ и энергии — это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду.

Все происходящие в организме преобразования вещества и энергии объединены общим названием — метаболизм (обмен веществ). На клеточном уровне эти преобразования осуществляются через сложные последовательности реакций, называемые путями метаболизма, и могут включать тысячи разнообразных реакций. Эти реакции протекают не хаотически, а в строго определенной последовательности и регулируются множеством генетических и химических механизмов. Метаболизм можно разделить на два взаимосвязанных, но разнонаправленных процесса: анаболизм (ассимиляция) и катаболизм (диссимиляция).

Анаболизм — это совокупность процессов биосинтеза органических веществ (компонентов клетки и других структур органов и тканей). Он обеспечивает рост, развитие, обновление биологических структур, а также накопление энергии (синтез макроэргов). Анаболизм заключается в химической модификации и перестройке поступающих с пищей молекул в другие более сложные биологические молекулы. Например, включение аминокислот в синтезируемые клеткой белки в соответствии с инструкцией, содержащейся в генетическом материале данной клетки.

Катаболизм — это совокупность процессов расщепления сложных молекул до более простых веществ с использованием части из них в качестве субстратов для биосинтеза и расщеплением другой части до конечных продуктов метаболизма с образованием энергии. К конечным продуктам метаболизма относятся вода (у человека примерно 350 мл в день), двуокись углерода (около 230 мл/мин), окись углерода (0,007 мл/мин), мочевина (около 30 г/день), а также другие вещества, содержащие азот (примерно б г/день).

Катаболизм обеспечивает извлечение химической энергии из содержащихся в пище молекул и использование этой энергии на обеспечение необходимых функций. Например, образование свободных аминокислот в результате расщепления поступающих с пищей белков и последующее окисление этих аминокислот в клетке с образованием СО2, и Н2О, что сопровождается высвобождением энергии.

Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста (в детском возрасте преобладает анаболизм, у взрослых обычно наблюдается равновесие, в старческом возрасте преобладает катаболизм), состояния здоровья, выполняемой организмом физической или психоэмоциональной нагрузки.

 

Цикл Кребса.

    Цикл трикарбоновых кислот впервые был открыт английским биохимиком Кребсом. Он первым постулировал значение данного цикла, который источником которого является гликолитическое превращение углеводов. В дальнейшем было показоно, что цикл Кребса является тем центром, где сходятся практически все метаболические пути. Таким образом, цикл Кребса – общий конечный путь окисления ацетильных групп, в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль «клеточного топлива»- углеводов, жирных кислот и аминокислот.

      Образовавшийся в результате гликолиза в цикле Эмбдена-Меергофа ацетил-КоА (продукт окислительного декарбоксилирования пирувата) окисляется до воды и углекислого газа в цикле Кребса (лимоннокислый цикл). Этот процесс осуществляется последовательными ферментативными реакциями, в результате которых высвобождается энергия (схема 6). Полный распад одной молекулы глюкозы дает 38 молекул АТФ, причем 24 из них образуются в цикле Кребса. Ферменты этого цикла локализуются в матриксе митохондрий (в стенке внутренней мембраны). Поступивший в цикл Кребса ацетил-КоА является конечным продуктом катаболизма не только углеводов, но также липидов и таких аминокислот, как фенилаланин, тирозин, лейцин и изолейцин.

 

Схема 6. Цикл Кребса (лимоннокислый цикл).

 

Кроме того, существует прямой путь окисления глюкозы – гексозомонофосфатный (пентозный) цикл, который преобладает в эритроцитах половых железах, коре надпочечников, печени. Хотя окисление в гексозомонофосфатном цикле составляет всего 2% от обмена углеводов (при сахарном диабете может увеличиваться до 6%), для организма значение этого цикла очень велико. Особенность этого процесса – образование пентоз, накопление NADPH (2)-кофермента дегидрогеназ, участвующих в синтезе нуклеиновых кислот, холестерина, жирных кислот, активировании фолиевой кислоты и образовании АТФ. Гексозомонофосфатный цикл обеспечивает также процессы гидроксилирования, необходимые для синтеза биогенных аминов (катехоламины, серотонин) и стероидных гормонов коры надпочечников. Последовательная цепь реакций пентозного цикла (схема 7) приводит к образованию рибулозо-5-фосфата, который идет на построение нуклеотидов или серией обратных реакций преобразуется в гексозофосфаты с использованием их в гликолитическом цикле.

 

Катаболизм органических веществ в тканях сопровождается потреблением кислорода и выделением СО2. Этот процесс называют тканевым дыханием. Кислород в этом процессе используется как акцептор водорода от окисляемых (дегидрируемых) веществ (субстратов), в результате чего синтезируется вода. Процесс окисления можно представить следующим уравнением: SH2 + 1/2 O2 à S + H2O. Окисляемые различные органические вещества (S — субстраты), представляют собой метаболиты катаболизма, их дегидрирование является экзоэргическим процессом. Энергия, освобождающаяся в ходе реакций окисления, либо полностью рассеивается в виде тепла, либо частично тратится на фосфорилирование ADP с образованием АТР. Организм превращает около 40% энергии, выделяющейся при окислении, в энергию макроэргических связей АТР. Большинство организмов в биосфере использует этот способ или очень сходный с ним (в качестве терминального акцептора водорода может быть не кислород, а другое соединение) как основной источник энергии, необходимый для синтеза внутриклеточной АТР. Таким путем клетка превращает химическую энергию питательных веществ, поступивших извне, в утилизируемую метаболическую энергию. Реакция дегидрирования и способ превращения выделившейся энергии путем синтеза АТР — это энергетически сопряженные реакции. Целиком весь сопряженный процесс называется окислительным фосфорилированием ADP:

Окислительное фосфорилирование ADP

Цепь транспорта электронов — ЦТЭ

Указанное выше уравнение для окислительно-восстановительной реакции представляет собой обобщенную форму, так как изображает процесс окисления субстратов как прямое дегидрирование, причем кислород выступает в роли непосредственного акцептора водорода. На самом деле кислород участвует в транспорте электронов иным образом. Существуют промежуточные переносчики при транспорте электронов от исходного донора электронов SH2 к терминальному акцептору — О2. Полный процесс представляет собой цепь последовательных окислительно-восстановительных реакций, в ходе которых происходит взаимодействие между переносчиками. Каждый промежуточный переносчик вначале выступает в роли акцептора электронов и протонов и из окисленного состояния переходит в восстановленную форму. Затем он передает электрон следующему переносчику и снова возвращается в окисленное состояние. На последней стадии переносчик передает электроны кислороду, который затем восстанавливается до воды. Совокупность последовательных окислительно-восстановительных реакций называется цепью переноса (транспорта) электронов, или дыхательной цепью:

Перенос электронов и протонов с участием промежуточных переносчиков. SH2 — исходный донор протонов и электронов; P — промежуточные переносчики; E1, E2, E3, E4 — ферменты окислительно-восстановительных реакций

Промежуточными переносчиками в дыхательной цепи у высших организмов являются коферменты: NAD+ (никотинамид-адениндинуклеотид), FAD и FMN (флавинадениндинуклеотид и флавинмононуклеотид), кофермент Q (CoQ), семейство гемсодержащих белков — цитохромов (обозначаемых как цитохромы b, С1, С, А, А3) и белки, содержащие негеминовое железо. Все участники этой цепи разделены на четыре окислительно-восстановительные системы, связанные убихиноном (CoQ) и цитохромом С. Процесс начинается с переноса протонов и электронов от окисляемого субстрата на коферменты NAD+ или FAD. Это определяется тем, является ли дегидрогеназа, катализирующая первую стадию, NAD — зависимой или FAD — зависимой. Если процесс начинается с NAD+ , то следующим переносчиком будет FMN.

Последовательность промежуточных переносчиков протонов и электронов в дыхательной цепи

Тип участвующей дегидрогеназы зависит от природы субстрата. Но каким бы ни был исходный субстрат, электроны и протоны от флавинов переносятся к коферменту Q, а дальше пути электронов и протонов расходятся. Электроны с помощью системы цитохромов достигают кислорода, который затем, присоединяя протоны, превращается в воду. Чтобы разобраться в системе транспорта электронов, необходимо познакомиться с отдельными ее участниками. NAD — зависимая дегидрогеназа катализирует реакции окисления непосредственно субстрата (первичная дегидрогеназа). NAD+ является коферментом и выполняет роль акцептора водорода:

Коферменты дегидрогеназ

Символ 2Н+ означает два электрона и два протона, обычно переносимые в виде гидрид иона. В этом случае вместо терминов «донор электронов» и «акцептор электронов» иногда используют термины «донор или акцептор водорода». FAD — зависимая дегидрогеназа также выполняет функцию первичной дегидрогеназы. Коферментом является FAD, который является акцептором водорода от субстрата. NADH — дегидрогеназа катализирует окисление NADH и восстановление убихинона (CoQ). Переносчиком водорода является кофермент — FMN (комплекс 1). В процессе реакции водород сначала присоединяется к FMN, соединенному с ферментом, а затем передается на убихинон. Флавиновые коферменты (FAD и FMN) прочно связаны с ферментом как простетические группы, поэтому ферменты, в состав которых они входят, называются флавопротеины. Флавинмононуклеотид (FMN), или рибофлавин фосфат, неразрывно связан с белковой частью фермента. Строго говоря, FMN не является нуклеотидом, так как флавиновая часть связана с рибитолом, а не с рибозой.

Убихинон (кофермент Q) — производное изопрена:

Название «убихинон» возникло из-за его повсеместной распространенности в природе. Кофермент Q действует как переносчик электронов на цитохромы.

Цитохромы — это гемопротеины — белки, содержащие в качестве прочно связанной простетической группы гем:

Простетическая группа гема в структуре цитохромов

Атом железа в геме может менять валентность, присоединяя или отдавая электроны:

В дыхательной цепи цитохромы служат переносчиками электронов и располагаются соответственно величине окислительно-восстановительного потенциала следующим образом: B, С1, С, а, а3. Гемовые группы цитохромов связаны с белковой частью донорно-акцепторными связями между ионом железа и соответствующими аминокислотными остатками:

Связывание гема с белковой частью цитохрома С

В цитохромах С и С1 дополнительные ковалентные связи формируются между тиогруппами цистеина и боковыми винильными группами гема. QН2-дегидрогеназа (комплекс III) представляет собой комплекс цитохромов b и С1. Этот фермент катализирует окисление восстановленного кофермента Q и перенос электронов на цитохром С. Электроны последовательно переносятся атомами железа цитохромов b и С1, а затем поступают на цитохром С. Протоны после окисления QH2 освобождаются в раствор.

Цитохромоксидаза включает комплекс цитохромов а и а3 (комплекс IV). Цитохромоксидаза кроме гема содержит ионы меди, которые способны менять валентность и таким способом участвовать в переносе электронов:

Цитохромоксидаза переносит электроны с цитохрома С на кислород. В переносе электронов участвуют сначала ионы железа цитохромов а и а3, а затем ион меди цитохрома а3. Молекула кислорода связывается с железом в геме цитохрома а3. Следовательно, переход электронов на кислород с иона меди цитохрома а3, происходит на молекуле фермента. Каждый из атомов молекулы кислорода присоединяет по два электрона и протона, образуя при этом молекулу воды.

Белки, содержащие негеминовое железо. Некоторое количество атомов железа в митохондриях связано не в геме цитохромов, а образует комплексы с другими белками. Эти белки называют также железосерными, так как атомы железа связаны с атомами серы цистеиновых остатков. Белки, содержащие негеминовое железо, участвуют в переносе электронов на нескольких стадиях, однако, не совсем ясны их локализация и механизм действия.

Окислительное фосфорилирование

Энергия, образующаяся при прохождении потока электронов по дыхательной цепи, используется для сопряженного фосфорилирования ADP. Эти два процесса взаимозависимы: окисление не может протекать в отсутствии ADP. Соотношение окисления и фосфорилирования определяется коэффициентом P/O (количество моль фосфорилированного ADP на 1/2 моль кислорода) коэффициент Р/О называется коэффициентом окислительного фосфорилирования и зависит от точки вхождения восстановительных эквивалентов в цепь транспорта электронов. Например Р/О=3, для субстратов, окисляемых NAD — зависимой дегидрогеназой , так как в дыхательной цепи есть три участка, где перенос электронов сопряжен с синтезом АТР. Не все субстраты передают электроны и протоны на NAD, некоторые окисляются FAD — зависимыми дегидрогеназами, которые переносят протоны и электроны сразу на убихинон, минуя первый комплекс. В этом случае Р/О=2. В действительности коэффициент фосфорилирования всегда меньше теоретической величины, потому что часть энергии, высвобождающейся при транспорте электронов, расходуется не на синтез АТР, а для переноса веществ через митохондриальную мембрану.

В сутки человек потребляет в среднем 27 моль кислорода. Основное его количество (примерно 25 моль) используется в митохондриях в дыхательной цепи. Следовательно, ежесуточно синтезируется 125 моль ATP или 62 кг (при расчете использовали коэффициент Р/О=2,5, то есть среднее значение коэффициента фосфорилирования). Масса всей АТР, содержащейся в организме, составляет примерно 20-30 г. Следовательно, можно сделать вывод, что каждая молекула АТР за сутки 2500 раз проходит процесс гидролиза и синтеза, что и характеризует интенсивность обмена АТР.

Сопряжение работы дыхательной цепи с процессом синтеза АТР

Существование такого сопряжения доказывается тем, что можно ингибировать образование АТР, не нарушая процесса транспорта электронов. Это достигается добавлением химических веществ, названных разобщителями. После удаления разобщителей синтез АТР восстанавливается. Изучение механизма сопряжении дает ответ на основные вопросы:

  1. каким образом транспорт электронов служит источником энергии?
  2. как эта энергия передается в реакцию ADP + Pi a АТР?

Существует несколько гипотез, объясняющих механизм сопряжения. Одной из них является хемоосмотическая теория. Цепь транспорта электронов функционирует как протонная (Н+)помпа, осуществляя перенос протонов из матрикса через внутреннюю мембрану в межмембранное пространство. Эндоэргический процесс выброса протонов из матрикса возможен за счет экзоэргических окислительно-восстановительных реакций дыхательной цепи. Перенос протонов приводит к возникновению разности концентрации Н+ с двух сторон митохондриальной мембраны: более высокая концентрация будет снаружи и более низкая — внутри. Митохондрия в результате переходит в «энергизованное» состояние, так как возникает градиент концентрации Н+ и одновременно разность электрических потенциалов со знаком плюс на наружной поверхности.

Электрохимический потенциал способен совершать «полезную» работу, он заставляет протоны двигаться в обратном направлении, но мембрана непроницаема для них кроме отдельных участков, называемых протонными каналами. Обратный перенос протонов в матрикс является экзоэргическим процессом, высвобождающаяся при этом энергия используется на фосфорилирование ADP. Эту реакцию катализирует фермент Н+-АТР-синтетаза, располагающаяся в области протонных каналов на внутренней поверхности внутренней мембраны.

С опряжение цепи транспорта электронов и фосфорилирования ADP посредством протонного градиента

С труктура компонентов комплекса I, обеспечивающего функционирование «протонной помпы» при окислении NADH

Разобщение дыхания и фосфорилирования

Убедительные экспериментальные доказательства в пользу описанного механизма сопряжения дыхания и фосфорилирования были получены с помощью ионофоров. Молекулы этих веществ, как правило, липофильны и способны переносить ионы через мембрану. Например, 2,4-динитрофенол (протонофор) легко диффундирует через мембрану, в ионизированной и неионизированной форме, перенося протоны в сторону их меньшей концентрации в

znakka4estva.ru

Особенности обмена веществ в живом организме

Обмен веществ является одним из основных свойств живой материи, необходимым условием жизни. В процессе обмена веществ происходит поступление питательных и других веществ из внешней среды, накопление свободной энергии в сложных органических соединениях или в форме электрических зарядов на поверхности клеточных мембран, расходование энергии на поддержание жизни. Конечным этапом обмена является выведение продуктов распада из организма.

Живой организм является открытой термодинамической системой: он обменивается с внешней средой веществами и энергией. В отличие от обмена веществ в неживых системах живой организм накапливает свободную энергию, поглощая пищевые вещества из внешней среды. За счет этой энергии осуществляются процессы роста и развития организма.

Физические и химические процессы в живом организме не теряют своего внутреннего качественного содержания, но существенно изменяются в направлении, определяемом законами развития живой материи. Накопление свободной энергии стало возможным только в живом организме. Эта качественно новая форма обмена веществ и энергии стала основой прогрессивного развития, усложнения форм живой материи.

Новая форма обмена обеспечила способность живого противостоять разрушительному влиянию внешней среды. Сохранение, поддержание жизни возможно только на основе постоянного самообновления и самовосстановления благодаря обмену между живым телом и внешней средой.

Накопление свободной энергии в живом организме происходит в результате ассимиляции. Ассимиляция (анаболизм) — усвоение веществ неживой природы, построение живых структур организма. В процессе ассимиляции простые вещества соединяются в более сложные, происходит формирование тканей и органов, рост и развитие организма. Диссимиляция (катаболизм) — разрушение, снашивание живых структур, распад сложных химических веществ с образованием свободной энергии и продуктов метаболизма.

Необходимые для обменных процессов вещества поступают в организм с пищей. В пище содержатся белки, жиры, углеводы, витамины, минеральные вещества, необходимые для пластических и энергетических процессов. Пищевые вещества используются для синтеза новых макромолекул (пластическое значение пищи) и для получения свободной энергии в результате окисления (энергетическое значение пищи).

Свободная энергия используется для построения новых структур и восстановления снашиваемых клеток, для синтеза гормонов, ферментов и других биологически активных веществ. Она расходуется и в процессах жизнедеятельности: при сокращении мышц, передаче нервных импульсов, секреторной функции, переносе веществ через клеточные мембраны. Часть энергии освобождается в виде тепла. Освобождение энергии пищевых веществ происходит в процессе внутриклеточного обмена.

Анаболические и катаболические процессы связаны между собой. Так, повышенный катаболизм при мышечной работе ведет к усилению анаболических процессов в восстановительном периоде. Эти особенности обмена необходимо учитывать при занятиях физическими упражнениями. Большие физические нагрузки, вызывая интенсивный катаболизм, являются необходимой предпосылкой для усиления восстановительных процессов и повышения спортивной работоспособности.

Обмен веществ в организме происходит в несколько этапов. На первом этапе высокомолекулярные белки, липиды и полисахариды расщепляются до низкомолекулярных соединений, которые свободно переходят в кровь и лимфу через стенки желудочно-кишечного тракта. Всасывание белков происходит после предварительного их расщепления до пептидов, аминокислот, нуклеотидов и нуклеозидов. Жиры предварительно расщепляются до жирных кислот и глицерина, высокомолекулярные сахара — до глюкозы, фруктозы и галактозы.

Превращения энергетических веществ в организме с момента их поступления в клетку характеризуют второй этап — этап межуточного обмена. В ходе межуточного обмена из большей части продуктов первого этапа обмена образуются ацетил-коэнзим-А, а-кетоглютаровая и щавелево-уксусная кислоты. Эти вещества подвергаются окислению в цикле лимонной кислоты. В результате окислительных процессов освобождается энергия, запасаемая в макроэргических связях аденозинтрифосфорной кислоты.

Конечный этап обмена веществ — выделение продуктов неполного распада с мочой, потом, экскретами сальных желез. В процессе обмена веществ происходит образование клеточных структур и освобождение энергии. Эти две стороны обмена выступают в единстве. Однако роль различных пищевых веществ в пластической и энергетической сторонах обмена неодинакова.

Фомин А. Ф. Физиология человека, 1995 г.

extremed.ru

Обмен веществ в живых организмах – Обмен веществ в живых организмах

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *