Содержание

2. Обмен веществ. Пластический и энергетический обмен

Между организмом и окружающей его средой непрерывно происходит обмен веществ и энергии.

Обмен веществ начинается с поступления в организм воды и пищевых продуктов. В пищеварительном канале часть веществ с помощью ферментов расщепляется до более простых, которые всасываются в кишечнике и переходят в кровь (и с кровью вещества переносятся к клеткам тела). В клетках происходят процессы их химических превращений (клеточный метаболизм), в ходе которых организм получает энергию и материалы, необходимые ему для построения собственных клеток и тканей.

Не использованные в результате превращений веществ остатки и продукты жизнедеятельности (продукты распада) выводятся из организма (с мочой, калом, потом и выдыхаемым воздухом).

 

-3-638.jpg

Пластический и энергетический обмен

Обмен веществ в организме — это не просто постоянный ток веществ через его основные структуры, а совокупность всех химических реакций, происходящих в организме. Все реакции, связанные с превращением веществ, можно отнести к двум процессам:

пластическому и энергетическому обмену.

 

obmen-veshestv.jpg

 

Пластический обмен (ассимиляция, или анаболизм) — совокупность реакций синтеза органических веществ в клетке с использованием (затратой) энергии.

В процессах энергетического обмена (диссимиляции, или катаболизма, или биологического окисления) происходит разрушение (распад) полученных с пищей питательных веществ до простых соединений с высвобождением энергии, запасённой в химических связях органических молекул пищи.

В здоровом организме оба процесса строго сбалансированы (хотя в период быстрого роста ассимиляция может временно преобладать над диссимиляцией).

Основными видами обмена веществ являются белковый, углеводный, жировой и водно-солевой обмены.

Энергетический обмен, подготовка к ЕГЭ по биологии

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза — диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический и пластический обмен веществ
Энергетический обмен

Энергетический обмен (диссимиляция — от лат. dissimilis ‒ несходный) — обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

  • Подготовительный этап
  • Осуществляется в ферментами, в результате действия которых, сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

    Под действием ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, сложные углеводы — до простых сахаров.

    Этапы энергетического обмена веществ
  • Бескислородный этап (анаэробный) — гликолиз
  • Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

  • Кислородный этап (аэробный)
  • Этот этап доступен только для аэробов — организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ — в сумме с двух ПВК выход составляет 36 молекул АТФ.

    Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

    Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

    Энергетический обмен
АТФ — аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ — универсального источника энергии. Молекула АТФ состоит из азотистого основания — аденина, углевода — рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи — ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда «∽».

Строение АТФ

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

Пластической обмен

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Что такое обмен веществ в биологии: определение

Обязательным условием существования любого живого организма является постоянное поступление питательных веществ и выведение конечных продуктов распада.

Что такое обмен веществ в биологии

Обмен веществ, или метаболизм, – это особый набор химических реакций, которые протекают в любом живом организме для поддержания его деятельности и жизни. Такие реакции дают организму возможность развиваться, расти и размножаться, при этом сохраняя свою структуру и отвечая на раздражители окружающей среды.

что такое обмен веществ в биологии

Обмен веществ принято разделять на два этапа: катаболизм и анаболизм. На первой стадии все сложные вещества расщепляются и становятся более простыми. На втором же вместе с затратами энергии синтезируются нуклеиновые кислоты, липиды и белки.

Самую важную роль в процессе метаболизма играют ферменты, которые являются активными биологическими катализаторами. Они способны снизить энергию активации физической реакции и регулировать обменные пути.

Метаболические цепи и компоненты абсолютно идентичны для многих видов, что является доказательством единства происхождения всех живых существ. Такое сходство показывает сравнительно раннее появление эволюции в истории развития организмов.

Классификация по типу обмена веществ

Что такое обмен веществ в биологии, подробно описано в данной статье. Все живые организмы, существующие на планете Земля, можно разделить на восемь групп, руководствуясь при этом источником углерода, энергии и окисляемого субстрата.

что такое обмен веществ в биологии определение

Живые организмы в качестве источника питания могут использовать энергию химических реакций или света. В качестве окисляемого субстрата могут быть как органические, так и неорганические вещества. Источником углерода является углекислый газ или органика.

Существуют такие микроорганизмы, которые, находясь в разных условия существования, используют метаболизм разного типа. Это зависит от влажности, освещения и других факторов.

обмен веществ биология 8 класс

Многоклеточные организмы могут характеризоваться тем, что один и тот же организм может иметь клетки с разным типом метаболических процессов.

Катаболизм

Биология обмен веществ и энергии рассматривает через такое понятие, как «катаболизм». Данным термином называют метаболические процессы, во время которых крупные частицы жиров, аминокислот и углеводов расщепляются. Во время катаболизма появляются простые молекулы, участвующие в реакциях биосинтеза. Именно благодаря данным процессам организм способен мобилизовать энергию, превращая ее в доступную форму.

У организмов, которые живут благодаря фотосинтезу (цианобактерии и растения), реакция переноса электрона не высвобождает энергию, а накапливает, благодаря солнечному свету.

биология обмен веществ и энергии

У животных реакции катаболизма связаны с расщеплением сложных элементов до более простых. Такими веществами являются нитраты и кислород.

Катаболизм у животных делится на три этапа:

  1. Расщепление сложных веществ до более простых.
  2. Расщепление простых молекул до еще более простых.
  3. Высвобождение энергии.

Анаболизм

Обмен веществ (биология 8 класса рассматривает данное понятие) характеризуется и анаболизмом – совокупностью метаболических процессов биосинтеза с затратой энергии. Сложные молекулы, которые являются энергетической основой клеточных структур, последовательно образуются из самых простых предшественников.

Сначала синтезируются аминокислоты, нуклеотиды и моносахариды. Затем вышеперечисленные элементы становятся активными формами благодаря энергии АТР. И на последнем этапе все активные мономеры объединяются в сложные структуры, такие как белки, липиды и полисахариды.

биология обмен веществ

Стоит обратить внимание, что не все живые организмы синтезируют активные молекулы. Биология (обмен веществ подробно описан в данной статье) выделяет такие организмы, как автотрофы, хемотрофы и гетеротрофы. Они получают энергию из альтернативных источников.

Энергия, получаемая из солнечного света

Что такое обмен веществ в биологии? Процесс, благодаря которому существует все живое на Земле, и отличающий живые организмы от неживой материи.

Энергией солнечного света питаются некоторые простейшие, растения и цианобактерии. У данных представителей обмен веществ происходит благодаря фотосинтезу – процессу поглощения кислорода и выделению углекислого газа.

Пищеварение

Такие молекулы, как крахмал, белки и целлюлоза, расщепляются еще до того, как они используются клетками. В процессе пищеварения принимают участие особые ферменты, которые расщепляют белки до аминокислот, и полисахариды — до моносахаридов.

урок биологии обмен веществ

Животные могут выделять такие ферменты только из специальных клеток. А вот микроорганизмы такие вещества выделяют в окружающее пространство. Все вещества, которые вырабатываются благодаря внеклеточным ферментам, поступают в организм с помощью «активного транспорта».

Контроль и регуляция

Что такое обмен веществ в биологии, вы можете прочитать в данной статье. Каждый организм характеризуется гомеостазом – постоянством внутренней среды организма. Наличие такого условия очень важно для любого организма. Так как все их окружает среда, которая постоянно меняется, для поддержания оптимальных условий внутри клеток все реакции метаболизма должны правильно и точно регулироваться. Хороший обмен веществ дает возможность живым организмам постоянно контактировать с окружающей средой и отвечать на ее изменения.

Исторические сведения

Что такое обмен веществ в биологии? Определение находится в начале статьи. Понятие «метаболизм» первый раз употребил Теодор Шванн в сороковых годах девятнадцатого века.

Изучением метаболизма ученые занимаются уже несколько веков, и начиналось все с попыток изучить организмы животных. А вот термин «обмен веществ» впервые употребил Ибн-аль-Нафиса, который считал, что все тело постоянно находится в состоянии питания и распада, поэтому для него характерны постоянные изменения.

Урок биологии «Обмен веществ» откроет всю суть данного понятия и опишет примеры, которые помогут увеличить глубину знаний.

Первый контролируемый опыт по изучению обмена веществ был получен Санторио Санторио в 1614 году. Он описывал свое состояние до и после приема пищи, работы, питья воды и сна. Он был первым, кто заметил, что большая часть употребленной пищи утрачивалась во время процесса «незаметного испарения».

В начальных исследованиях обменные реакции были не обнаружены, и ученые считали, что живой тканью управляет живая сила.

В двадцатом веке Эдуард Бухнер ввел понятие ферментов. С этих пор изучение обмена веществ начиналось с изучения клеток. В этот период биохимия стала наукой.

Что такое обмен веществ в биологии? Определение можно дать следующее — это особый набор биохимических реакций, поддерживающих существование организма.

Минералы

В метаболизме очень большую роль играют неорганические вещества. Все органические соединения состоят из большого количества фосфора, кислорода, углерода и азота.

Большинство неорганических соединений позволяют контролировать уровень давления внутри клеток. Также их концентрация положительно влияет на функционирование мышечных и нервных клеток.

Переходные металлы (железо и цинк) регулируют активность транспортных белков и ферментов. Все неорганические микроэлементы усваиваются благодаря транспортным белкам и никогда не пребывают в свободном состоянии.

1. Гомеостаз. Метаболизм. Ассимиляция (анаболизм, пластический обмен)

Для нормальной жизнедеятельности клетки и всего многоклеточного организма необходимо постоянство внутренней среды, получившее название гомеостаза.

Гомеостаз — постоянство внутренней среды биологических систем.

Гомеостаз поддерживается реакциями обмена веществ, которые подразделяются на ассимиляцию (анаболизм) и диссимиляцию (катаболизм). Все реакции, протекающие в клетке, направлены на поддержание гомеостаза, для этого необходимы вещества и энергия.

Вся совокупность реакций биосинтеза веществ и их последующей сборки в более крупные структуры, идущих с затратой энергии, называется ассимиляцией, анаболизмом или пластическим обменом.

К пластическому обмену относятся фотосинтез, биосинтез белков, нуклеиновых кислот, жиров и углеводов. Особенно интенсивно процессы ассимиляции происходят в растущих клетках развивающегося организма.

 

Для осуществления пластического обмена необходима энергия. Клетка получает её из реакций распада запасённых или полученных извне органических соединений. При участии ферментов эти вещества разлагаются на более простые соединения; при этом высвобождается энергия, часть которой выделяется в виде тепла, а часть запасается в виде молекул АТФ. В случае необходимости энергия АТФ используется для компенсации энергетических затрат клетки, например для обеспечения процессов ассимиляции.

Совокупность реакций распада веществ, сопровождающихся запасанием энергии, называется диссимиляцией, катаболизмом или энергетическим обменом.

Ассимиляция и диссимиляция — противоположные процессы: в первом случае происходит образование веществ, на что тратится энергия, а во втором — распад веществ с образованием и запасанием энергии.


Ассимиляция и диссимиляция —  две стороны единого процесса обмена веществ и энергии в клетке, который называется метаболизм.

Обмен веществ (метаболизм) — это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме.

Ассимиляция и диссимиляция всегда строго сбалансированы и скоординированы, а нарушение этого баланса приводит к развитию какого-либо заболевания как отдельных клеток, так и целого организма, или даже к их гибели.
image517.jpg

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Конспект «Обмен веществ» — УчительPRO

«Обмен веществ»



Обмен веществ — совокупность реакций пластического и энергетического обменов.

Обмен веществ

Пластический и энергетический обмен, их взаимосвязь.

Пластический обмен (ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых.

Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ.

 Этапы обмена веществ:

  • поступление веществ в организм;
  • изменение веществ в ходе ассимиляции и диссимиляции;
  • выведение конечных продуктов обмена.

обмен энергии


Водно-минеральный обмен в организме.

Суточная потребность организма в воде в среднем составляет 2-2,5 л. Вода поступает в организм при питье (около 1 л), с пищей (около 1 л), небольшое количество (300— 350 мл) ее образуется в результате окисления органических веществ. Вода всасывается в кишечнике (тонком и толстом), ротовой полости и желудке. Из организма вода выводится с мочой (1,2-1,5 л), с потом (500-700 мл), выдыхаемым воздухом (350-800 мл), калом (100-150 мл).

водно-солевой баланс

Минеральные соли в организме могут быть в твердом состоянии в виде кристаллов — Са3(Р04)2 и СаСО3 в костной ткани; в диссоциированном состоянии в виде катионов и анионов. Анионы создают фосфатную буферную систему, поддерживающую внутри клеток слабокислую среду (pH 6,9), и бикарбонатную буферную систему, поддерживающую слабощелочную реакцию внеклеточной среды (pH 7,4). Общее количество минеральных солей около 4,5%. Потребности организма в них удовлетворяются продуктами питания. Железа много в яблоках, йода — в морской капусте, кальция — в молочных продуктах. Человеку необходимо постоянное поступление натрия и хлора (до 10 г поваренной соли в сутки). Всасывание солей происходит вместе с водой в толстом кишечнике. Попавшие в кровь минеральные соли доставляются клеткам. Излишки минеральных солей выводятся с мочой, потом и калом.

минеральные соли

Обмен белков.

Суточная потребность организма в белках составляет 72-92 г. Источником белков являются преимущественно продукты животного происхождения. По содержанию аминокислоты белки делятся на полноценные (белки молока, мяса, рыбы и др.) и неполноценные, которые не содержат ни одной из незаменимых аминокислот. Особенно важны десять незаменимых аминокислот, не синтезируемых в организме (лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, аргинин, гистидин).

Протеолитические ферменты расщепляют белки до полипептидов и аминокислот. Аминокислоты всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по организму. В клетках из них образуются белки, свойственные организму. При избытке белки преобразуются в углеводы и жиры. Часть аминокислот, не использованных в синтезе белка, окисляется с освобождением энергии (17,6 кДж на 1 г вещества) и образованием воды, диоксида углерода, аммиака и др. Аммиак в печени превращается в мочевину. Продукты диссимиляции белков выводятся с мочой, потом и частично с выдыхаемым воздухом.

обмен белков и жиров

Обмен жиров.

Суточная потребность организма в жирах составляет 81-110 г. Животные жиры поступают в организм в виде сливочного масла, сыра, сметаны, свиного сала; растительные — в виде растительного масла. Липолитические ферменты расщепляют жиры до глицерола и жирных кислот. Жиры всасываются в лимфу, затем поступают в кровь и разносятся по всем клеткам. Часть жира, попавшего в клетки, является строительным материалом. Большая же его часть откладывается в подкожной клетчатке. При окислении 1 г жира выделяется 38,9 кДж энергии. Жиры могут синтезироваться из углеводов и белков. Конечные продукты окисления жиров — диоксид углерода и вода, удаляются с выдыхаемым воздухом, мочой, потом.

Обмен углеводов.

В сутки человек должен получать 358—484 г углеводов. Основной их источник — продукты растительного происхождения (картофель, хлеб). Углеводы в организме могут образовываться из белков и жиров. Амилолитические ферменты расщепляют углеводы до дисахаридов и моносахаридов. Моносахариды всасываются в кровеносные капилляры ворсинок кишечника и разносятся кровью по организму. Избыток глюкозы превращается в печени в гликоген. При чрезмерном поступлении углеводов они превращаются в жиры. В клетках глюкоза окисляется до диоксида углерода и воды, которые удаляются с выдыхаемым воздухом, мочой, потом, при этом выделяется энергия (17,6 кДж на 1 г глюкозы).

обмен углеводов


Это конспект по биологии в 8 классе по теме «Обмен веществ». Выберите дальнейшие действия:

обмен веществ — Биологический энциклопедический словарь

Метаболизм, совокупность протекающих в живых организмах химич. превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Благодаря О. в. происходит расщепление и синтез молекул, входящих в состав клеток, образование, разрушение и обновление клеточных структур и межклеточного вещества. Напр., у человека половина всех тканевых белков расщепляется и строится заново в среднем в течение 80 сут, белки печени и сыворотки крови наполовину обновляются каждые 10 сут, а белки мышц— 180, отд. ферменты печени — каждые 2—4 ч. О. в. неотделим от процессов превращения энергии: потенциальная энергия химич. связей сложных органич. молекул в результате химич. превращений переходит в другие виды энергии, используемой на синтез новых соединений, для поддержания структуры и функции клеток, температуры тела, для совершения работы и т. д. Все реакции О. в. и превращения энергии протекают при участии биол. катализаторов — ферментов. У самых разных организмов О. в. отличается упорядоченностью и сходством последовательности ферментативных превращений, несмотря на большой ассортимент химич. соединений, вовлекаемых в обмен. В то же время для каждого вида характерен особый, генетически закреплённый тип О. в., обусловленный условиями его существования.

О. в. складывается из двух взаимосвязанных, одновременно протекающих в организме процессов — ассимиляции и диссимиляции, или анаболизма и катаболизма. В ходе катаболич. превращений происходит расщепление крупных органич. молекул до простых соединений с одновременным выделением энергий, которая запасается в форме богатых энергией фосфатных связей, гл. обр. в молекуле аденозинтрифосфорной к-ты (АТФ) и др. богатых энергией соединений. Катаболич. превращения обычно осуществляются в результате гидролитич. и окислит, реакций и протекают как в отсутствие кислорода (анаэробный путь-гликолиз, брожение), так и при его участии (аэробный путь — дыхание). Второй путь эволюционно более молодой и в энергетич. отношении более выгодный. Он обеспечивает полное расщепление органич. молекул до CO2 и H2O. Разнообразные органич. соединения в ходе катаболич. процессов превращаются в ограниченное число небольших молекул (помимо CO2 и H2O): углеводы — в триозофосфаты и (или) пиру ват, жиры — в ацетил-КоА, пропионил-КоА и глицерин, белки — в ацетил-КоА, оксалоацетат, α-кетоглютарат, фумарат, сукцинат и конечные продукты азотистого обмена — мочевину, аммиак, мочевую к-ту и др.

В ходе анаболич. превращений происходит биосинтез сложных молекул из простых молекул-предшественников. Автотрофные организмы (зелёные растения и нек-рые бактерии) могут осуществлять первичный синтез органич. соединений из CO2 с использованием энергии солнечного света (фотосинтез) или энергии окисления неорганич. веществ. Гетеротрофы синтезируют органич. соединения только за счёт энергии и продуктов, образующихся в результате катаболич. превращений. Исходным сырьём для процессов биосинтеза в этом случае служит небольшое число соединений, в т. ч. ацетил-КоА, сукцинил-КоА, рибоза, пировиноградная к-та, глицерин, глицин, аспарагиновая, глутаминовая и др. аминокислоты. Каждая клетка синтезирует характерные для неё белки, жиры, углеводы и др. соединения. Напр., гликоген мышц синтезируется в мышечных клетках, а не доставляется кровью из печени. Как правило, синтез включает восстановит, этапы и сопровождается потреблением энергии.

Катаболизм и анаболизм протекают в клетках одновременно и заключит, стадия катаболич. превращений является исходной стадией анаболизма. Однако катаболич. и анаболич. пути О. в. не совпадают между собой. Напр., в расщеплении гликогена до молочной к-ты участвует 12 ферментов, каждый из к-рых катализирует отд. этап этого процесса. Синтез же гликогена из молочной к-ты включает только 9 ферментативных этапов, представляющих собой обращение соотв. этапов катаболизма, а 3 недостающих заменяются иными ферментативными реакциями, к-рые используются только для биосинтеза. Не совпадают катаболич. и анаболич. пути обмена между белками и аминокислотами или между жирными к-тами и ацетил-КоА. Более того, разл. обменные реакции приурочены к определённым участкам клетки. Вся ферментативная система гликолиза локализуется в растворимой фракции цитоплазмы. В митохондриях сосредоточены процессы, связанные с биол. окислением и окислит. фосфорилированием, в лизосомах — гидролитич. ферменты, процессы биосинтеза белка осуществляются в рибосомах, а биосинтеза липидов — в эндоплазматич. сети и т. д. В разл. частях клетки локализуются и химически несовместимые реакции. Напр., окисление жирных к-т катализируется набором ферментов, локализованных в митохондриях, тогда как синтез жирных к-т из ацетил-КоА — с помощью другого набора ферментов, локализованных в цитоплазме.

Хотя и катаболич., и анаболич. пути осуществляются специфическими наборами ферментов, их постоянно связывают и общие стадии О. в. (см. схему). Наиб, важным общим промежуточным продуктом О. в., участвующим во всех процессах, является ацетил-КоА. Большое значение имеет цикл превращений (циклтрикарбоновых к-т), в ходе к-рого ацетил-КоА через ряд промежуточных продуктов окисляется полностью до CO2 и H2O. В то же время с ацетил-КоА начинается синтез жирных к-т, холестерина, ряда азотсодержащих соединений и т. д.

В процессе эволюции организмы выработали тонкие регуляторные системы, обеспечивающие высокую степень упорядоченности и согласованности реакций и позволяющие приспособиться к изменениям условий окружающей среды. Для всех организмов существуют в осн. одинаковые системы регуляции, действующие на уровне клеточного О. в. В этом случае интенсивность и направленность биохимич. реакций может регулироваться воздействием либо на активность фермента путём его ингибирования или активирования, либо на его синтез или деградацию. Большую роль в регуляции играет строгая упорядоченность расположения ферментов в клеточных структурах, а также избират. проницаемость биол. мембран. Высокоразвитые организмы обладают дополнительными регуляторными механизмами — нервными и гормональными. Атрофия тканей после денервации указывает на важное значение нервных импульсов для клеточного О. в. Гормоны выполняют в клетках и тканях контролирующие функции, либо непосредственно воздействуя на ферменты или их синтез, либо влияя на проницаемость клеточных мембран, функц. состояние клеточных органоидов и систему циклич. нуклеотидов.

обмен веществ

Источник: Биологический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. обмен веществ — ОБМЕН ВЕЩЕСТВ — см. метаболизм. Ботаника. Словарь терминов
  2. обмен веществ — (метаболизм), совокупность процессов химических и физических превращений, происходящих в живых организмах и обеспечивающих их жизнедеятельность при взаимодействии с внешней средой. Биология. Современная энциклопедия
  3. обмен веществ — сущ., кол-во синонимов: 1 метаболизм 3 Словарь синонимов русского языка
  4. обмен веществ — См. метаболизм. Микробиология. Словарь терминов
  5. Обмен веществ — Или метаболизм, — лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Большая советская энциклопедия
  6. обмен веществ — ОБМЕН ВЕЩЕСТВ (метаболизм) совокупность хим. процессов, обеспечивающих жизнедеятельность организма. Хим. превращ. в организме осуществляются в двух противоположных направлениях-синтез сложных соед. Химическая энциклопедия
  7. ОБМЕН ВЕЩЕСТВ — ОБМЕН ВЕЩЕСТВ (метаболизм) — совокупность всех химических изменений и всех видов превращений веществ и энергии в организмах, обеспечивающих развитие, жизнедеятельность и самовоспроизведение организмов… Большой энциклопедический словарь
  8. обмен веществ — ОБМЕН ВЕЩЕСТВ, метаболизм, совокупность хим. н связанных с ними энергетич. процессов превращения поступающих извне и возникающих в клетках в-в; лежит в основе жизнедеятельности живых организмов и является одним из осн. признаков жизни. О. Сельскохозяйственный словарь
обмен веществ

2. Энергетический обмен (катаболизм, диссимиляция)

Универсальным источником энергии во всех клетках служит АТФ (аденозинтрифосфат, или аденозинтрифосфорная кислота).

Все энергетические затраты любой клетки обеспечиваются за счёт универсального энергетического вещества — АТФ.

 

АТФ синтезируется в результате реакции фосфорилирования, то есть присоединения одного остатка фосфорной кислоты к молекуле АДФ (аденозиндифосфата):

 

АДФ + h4PO4+ 40 кДж = АТФ + h3O.


Энергия запасается в форме энергии химических связей АТФ.  Химические связи АТФ, при разрыве которых выделяется много энергии, называются макроэргическими.


При распаде АТФ до АДФ клетка за счёт разрыва макроэргической связи получит приблизительно \(40\) кДж энергии.


Энергия для синтеза АТФ из АДФ  выделяется в процессе диссимиляции.

Энергетический обмен (диссимиляция, катаболизм) — это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.

В зависимости от среды обитания организма, диссимиляция может проходить в два или в три этапа.


Процессы расщепления органических соединений у аэробных организмов происходят в три этапа: подготовительныйбескислородный и кислородный.

 

В результате этого органические вещества распадаются до простейших неорганических соединений.

 


 

У анаэробных организмов, обитающих в бескислородной среде и не нуждающихся в кислороде (а также у аэробных организмов при недостатке кислорода), диссимиляция происходит в два этапа: подготовительный и бескислородный.

 

В двухэтапном энергетическом обмене энергии запасается гораздо меньше, чем в трёхэтапном.

Первый этап — подготовительный

Подготовительный этап заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот.

Этот процесс называется пищеварением. У многоклеточных организмов он осуществляется в желудочно-кишечном тракте с помощью пищеварительных ферментов. У одноклеточных организмов — происходит под действием ферментов лизосом.

 

В ходе биохимических реакций, происходящих на этом этапе, энергии выделяется мало, она рассеивается в виде тепла, и АТФ  не образуется.

Второй этап — бескислородный (гликолиз)

Второй (бескислородный) этап заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.

Биологический смысл второго этапа заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде \(2\) молекул АТФ.

Процесс бескислородного расщепления глюкозы называется гликолиз.

Гликолиз происходит в цитоплазме клеток.

 

Он состоит из нескольких последовательных реакций превращения молекулы глюкозы C6h22O6 в две молекулы пировиноградной кислоты — ПВК C3h5O3 и две молекулы АТФ (в виде которой запасается примерно \(40\) % энергии, выделившейся при гликолизе). Остальная энергия (около \(60\) %) рассеивается в виде тепла.

 

C6h22O6+2h4PO4+2АДФ=2C3h5O3+2АТФ +2h3O.


Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту C3H6O3.

 

HOOC−CO−Ch4пировиноградная кислота→НАД⋅H+H+лактатдегидрогеназаHOOC−CHOH−Ch4молочная кислота.

В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль. У нетренированных людей это происходит быстрее, чем у людей тренированных.


При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит спиртовое брожение: пировиноградная кислота распадается на этиловый спирт C2H5OH и углекислый газ CO2:

 

C6h22O6+2h4PO4+2АДФ=2C2H5OH+2CO2+2АТФ+2h3O.

Третий этап — кислородный

В результате гликолиза глюкоза распадается не до конечных продуктов (CO2 и h3O), а до богатых энергией соединений (молочная кислота, этиловый спирт) которые, окисляясь дальше, могут дать её в больших количествах. Поэтому у аэробных организмов после гликолиза (или спиртового брожения) следует третий, завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание.

 

Этот этап происходит на кристах митохондрий.


Третий этап, так же как и гликолиз, является многостадийным и состоит из двух последовательных процессов — цикла Кребса и окислительного фосфорилирования.

Третий (кислородный) этап заключается в том, что при кислородном дыхании ПВК окисляется до окончательных продуктов — углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде  \(36\) молекул АТФ  (\(2\) молекулы в цикле Кребса и \(34\) молекулы в ходе окислительного фосфорилирования).

Этот этап можно представить себе в следующем виде:

 

2C3h5O3+6O2+36h4PO4+36АДФ=6CO2+42h3O+36АТФ.


Вспомним, что ещё две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы (на втором, бескислородном, этапе). Таким образом, в результате полного расщепления одной молекулы глюкозы образуется \(38\) молекул АТФ.


Суммарная реакция энергетического обмена:

  

C6h22O6+6O2=6CO2+6h3O+38АТФ.

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

5 простых домашних экспериментов по биологии, которые вы можете проводить дома

Вот пять простых домашних экспериментов, позволяющих получать удовольствие от биологии без использования дорогостоящего оборудования.

Биология чрезвычайно увлекательна, но не у всех из нас есть доступ к современному лабораторному оборудованию для проведения биологических экспериментов. Тем не менее, вы можете поэкспериментировать дома с подходящими материалами. Я собрал серию экспериментов по биологии, которые подходят для всех возрастов и уровней знаний биологии.Основная цель — развлечься наукой и проявить любопытство.

На всякий случай в список не включены эксперименты по генной инженерии, поскольку во многих странах вам не разрешается проводить их в несертифицированных учреждениях. Тем не менее, если вы очень заинтересованы, некоторые люди смогли сертифицировать свои дома для создания генетически модифицированных микробов.

1. Извлеките свою собственную ДНК

Извлечь ДНК в домашних условиях, просто используя повседневные кухонные принадлежности, очень легко.Вы можете извлечь собственную ДНК из слюны или использовать любые фрукты или овощи, которые найдете дома (бананы и клубника — одни из самых популярных на научных ярмарках).

Следуйте приведенным здесь инструкциям, чтобы извлечь ДНК. В конце процесса у вас должно получиться белое мутное вещество, которое можно собрать зубочисткой. Затем вы можете наблюдать его под микроскопом или попробовать метиленовый синий, краситель, который обычно используется в биологических лабораториях, который связывается с ДНК и заставляет ее становиться синей (следует использовать с осторожностью, если за пределами лаборатории).Если вы высушите ДНК и храните ее в бумажном пакете или конверте, вы сможете использовать ее в будущих экспериментах.

Также можно проанализировать извлеченную ДНК в домашних условиях, хотя этот этап может быть немного дорогостоящим. Оборудование для электрофореза, метода разделения молекул ДНК по размеру, можно купить примерно от 300 евро. Его также можно построить дома, приложив немного усилий. Если вы хотите пойти дальше, вы можете приобрести карманный секвенатор ДНК примерно за 1000 евро или полную портативную лабораторию ДНК за 1500 евро.

2. Культивирование бактерий на домашнем агаре

Бактерии, дрожжи и другие микроорганизмы нас окружают. Вы можете легко приготовить питательную среду дома, а затем собрать образцы из разных мест, чтобы узнать, что там живет.

В этом видео вы найдете пошаговое руководство по приготовлению агаровых чашек на кухне. После того, как вы заставите микробы расти на чашках, вы можете поэкспериментировать с тем, как различные условия влияют на их рост, или проверить влияние антибиотиков на разные микроорганизмы.(И если у вас есть секвенатор ДНК, вы можете использовать его, чтобы определить, какие виды растут на вашей чашке Петри.)

Для творческих душ вы также можете создавать искусство, используя преимущества разных цветов и текстур разных микробы можно найти. Ежегодно Американское общество микробиологов проводит всемирный конкурс агарового искусства, на который вы можете представить свои лучшие творения.

3. Ферментируйте свои собственные продукты питания

Ферментация — это одна из тех вещей, на которых лучше всего работают бактерии и дрожжи.Мы используем эти микроорганизмы для приготовления пищи с древних времен, и ферментировать пищу дома довольно легко.

Есть много вариантов на выбор: от напитков, таких как чайный гриб, кефир или медовуха, до йогурта, сыра, кимчи и квашеной капусты. В большинстве случаев вам нужна просто закваска бактерий или грибков, из которых будет получена еда, которую вы будете ферментировать. Вы можете получить его у кого-то, кто уже занимается ферментацией дома, или купить в Интернете.

К каждому ферментированному продукту предъявляются разные требования, поэтому перед началом работы убедитесь, что у вас есть все необходимое.Существует множество онлайн-уроков, которым вы можете следовать, и как только вы освоитесь с методами, вы можете начать играть с различными условиями и ингредиентами для закуски, чтобы изменить вкус и текстуру своей еды.

4. Посмотрите на деление клеток под микроскопом

В настоящее время вы можете легко найти дешевые цифровые микроскопы с большим увеличением, которые можно подключить непосредственно к вашему ноутбуку или смартфону. Вы можете взять с собой цифровой микроскоп и наблюдать за каждой мелочью, которую найдете дома или на улице.(Совет: вы найдете много интересных форм жизни в прудах или любом другом источнике неочищенной воды)

Отличный эксперимент, который можно провести дома с микроскопом, — это посмотреть, как делятся клетки в разных организмах. Один из самых простых — пекарские дрожжи. При увеличении не менее 400x вы можете начать различать формы отдельных дрожжевых клеток в воде. Вы заметите, что на некоторых из них есть маленькие бутоны, по которым они растут и делятся.

Клетки, расположенные на кончиках корней лука, также являются очень хорошим объектом для изучения.Независимо от того, готовите ли вы их и окрашиваете сами или покупаете готовые предметные стекла для микроскопа, эти клетки отлично подходят для наблюдения за различными стадиями митоза и за тем, как ДНК дублируется и перестраивается по мере деления клеток.

5. Сделайте биолюминесцентную лампу

Некоторые микроорганизмы способны сами генерировать свет. Когда их собирается достаточно, они могут заставить светиться целые пляжи ночью. К счастью, мы живем в эпоху Интернета, и есть возможность заказать эти микробы онлайн и доставить их прямо домой.(Например, из таких магазинов, как Carolina или Sea Farms.)

Биолюминесцентные организмы могут существовать в течение нескольких месяцев при правильных условиях, включая обеспечение достаточного освещения в течение дня для восстановления своей способности светиться. Ночью они начнут светиться, когда вы их встряхнете.

Вы можете поэкспериментировать с выращиванием этих организмов в различных условиях и поиграть с их способностью создавать свет. Еще одна крутая идея — поместить их в закрытый фонтан, где они будут постоянно трясти и светиться (по крайней мере, пока у них не закончится энергия).


Эти биологические эксперименты познакомят вас с миром DIY Biology. Если вы хотите глубже погрузиться в изучение биологии за пределами лаборатории, био-сообщество DIY быстро растет по всему миру. Вы можете найти лаборатории и других энтузиастов биологии во многих городах Европы и США, где вы сможете посещать семинары, получать доступ к более современному оборудованию и встречаться с людьми из разных слоев общества, которые готовы помочь вам в ваших самых смелых биологических проектах. Радоваться, веселиться!


Эта статья была впервые опубликована 13 августа 2018 г.Он был обновлен, чтобы отразить последние события.

Изображения через Shutterstock; Лицензия Creative Commons

.

биология | Определение, история, концепции, отрасли и факты

Биология , изучение живых существ и процессов их жизнедеятельности. Эта область занимается всеми физико-химическими аспектами жизни. Современная тенденция к междисциплинарным исследованиям и объединению научных знаний и исследований из разных областей привела к значительному совпадению области биологии с другими научными дисциплинами. Современные принципы других областей — например, химии, медицины и физики — интегрированы с принципами биологии в таких областях, как биохимия, биомедицина и биофизика.

биология; микроскоп Исследователь с помощью микроскопа исследует образец в лаборатории. © Раду Разван / Fotolia

Популярные вопросы

Что такое биология?

Биология — это отрасль науки, изучающая живые организмы и их жизненные процессы. Биология охватывает различные области, включая ботанику, охрану, экологию, эволюцию, генетику, морскую биологию, медицину, микробиологию, молекулярную биологию, физиологию и зоологию.

Почему важна биология?

Где работают выпускники биологических специальностей?

Выпускники биологических специальностей могут работать на самых разных должностях, для некоторых из них может потребоваться дополнительное образование.Человек со степенью в области биологии может работать в сельском хозяйстве, здравоохранении, биотехнологии, образовании, охране окружающей среды, исследованиях, судебной медицине, политике, научном общении и во многих других областях.

Биология разделена на отдельные разделы для удобства изучения, но все подразделения взаимосвязаны по основным принципам. Таким образом, хотя принято отделять изучение растений (ботаника) от исследования животных (зоология) и изучение структуры организмов (морфология) от функции (физиология), все живые существа имеют общие определенные биологические явления — например, различные способы воспроизводства, деления клеток и передачи генетического материала.

Биология часто рассматривается на основе уровней, которые имеют дело с фундаментальными единицами жизни. Например, на уровне молекулярной биологии жизнь рассматривается как проявление химических и энергетических преобразований, которые происходят между многими химическими составляющими, составляющими организм. В результате развития все более мощных и точных лабораторных инструментов и методов стало возможным понять и определить с высокой точностью не только конечную физико-химическую организацию (ультраструктуру) молекул в живом веществе, но и способ воспроизведения живого вещества. на молекулярном уровне.Особенно важным для этих достижений стал рост геномики в конце 20-го и начале 21-го веков.

Клеточная биология — это изучение клеток — фундаментальных единиц структуры и функций живых организмов. Впервые клетки были обнаружены в 17 веке, когда был изобретен составной микроскоп. До этого отдельные организмы изучались как единое целое в области, известной как биология организма; эта область исследований остается важным компонентом биологических наук. Популяционная биология имеет дело с группами или популяциями организмов, которые населяют данную область или регион.На этот уровень включены исследования ролей, которые определенные виды растений и животных играют в сложных и самовоспроизводящихся взаимоотношениях, существующих между живым и неживым миром, а также исследования встроенных средств управления, которые естественным образом поддерживают эти отношения. . Эти общие уровни — молекулы, клетки, целые организмы и популяции — могут быть дополнительно подразделены для изучения, что дает начало таким специализациям, как морфология, таксономия, биофизика, биохимия, генетика, эпигенетика и экология.Область биологии может быть особенно связана с исследованием одного вида живых существ — например, изучение птиц в орнитологии, изучение рыб в ихтиологии или изучение микроорганизмов в микробиологии.

Britannica Premium: удовлетворение растущих потребностей искателей знаний. Получите 30% подписки сегодня. Подпишись сейчас

Основные понятия биологии

Биологические принципы

Концепция гомеостаза — что живые существа поддерживают постоянную внутреннюю среду — была впервые предложена в 19 веке французским физиологом Клодом Бернаром, который заявил, что «все жизненные механизмы, как бы они ни были разнообразны, имеют только одну цель: сохранение постоянные условия жизни.”

Как первоначально задумал Бернар, гомеостаз применяется к борьбе одного организма за выживание. Позже эта концепция была расширена, чтобы включить любую биологическую систему от клетки до всей биосферы, все области Земли, населенные живыми существами.

Единство

Все живые организмы, независимо от их уникальности, имеют определенные общие биологические, химические и физические характеристики. Все они, например, состоят из основных единиц, известных как клетки, и одних и тех же химических веществ, которые при анализе обнаруживают заметное сходство даже в таких разрозненных организмах, как бактерии и люди.Более того, поскольку действие любого организма определяется тем, как взаимодействуют его клетки, и поскольку все клетки взаимодействуют практически одинаково, основное функционирование всех организмов также схоже.

клеток Клетки животных и растений содержат мембраносвязанные органеллы, в том числе отдельное ядро. Напротив, бактериальные клетки не содержат органелл. Британская энциклопедия, Inc.

Существует не только единство основной живой субстанции и функционирования, но и единство происхождения всего живого.Согласно теории, предложенной в 1855 году немецким патологом Рудольфом Вирховым, «все живые клетки возникают из уже существующих живых клеток». Эта теория кажется верной для всех живых существ в настоящее время при существующих условиях окружающей среды. Если, однако, жизнь зарождалась на Земле более одного раза в прошлом, тот факт, что все организмы имеют одинаковую базовую структуру, состав и функции, может указывать на то, что только один первоначальный тип преуспел.

Общее происхождение жизни объяснило бы, почему у людей или бактерий — и во всех промежуточных формах жизни — одно и то же химическое вещество, дезоксирибонуклеиновая кислота (ДНК), в форме генов определяет способность всего живого вещества воспроизводить себя. именно так и для передачи генетической информации от родителей к потомкам.Более того, механизмы этой передачи следуют шаблону, одинаковому для всех организмов.

Всякий раз, когда происходит изменение в гене (мутация), происходит какое-то изменение в организме, который содержит этот ген. Именно это универсальное явление порождает различия (вариации) в популяциях организмов, из которых природа отбирает для выживания тех, которые лучше всего способны справиться с изменяющимися условиями окружающей среды.

.

Эволюция и разнообразие — возможности в биологии

Эволюция и разнообразие являются результатом взаимодействий между организмами и их средой, а также последствий этих взаимодействий в течение длительных периодов времени. Организмы постоянно приспосабливаются к своей среде, и разнообразие существующих сред способствует появлению разнообразия организмов, адаптированных к ним. В последние годы новые методы и подходы открыли новые захватывающие возможности для исследования процессов, порождающих эволюцию и разнообразие.В результате сейчас существуют большие возможности для развития знаний, чем в любой другой период с 1930-х и 1940-х годов, когда эволюционная биология и генетика объединились в то, что стало называться современным синтезом эволюционной биологии.

Примеры процессов и результатов эволюции в эволюции устойчивости к инсектицидам у насекомых и устойчивости бактерий к антибиотикам

Первым синтетическим органическим инсектицидом, принятым на практическое использование, был ДДТ, который был представлен в 1941 году.Оказалось, что ДДТ имеет много преимуществ, потому что в правильной дозе он токсичен для насекомых, но не для человека. Как следствие, ДДТ был быстро использован во всем мире для борьбы с комнатными мухами, комарами и множеством других насекомых-вредителей. После первоначального успеха ДДТ в качестве инсектицидов были введены многие другие экзотические химические соединения. За введением и широким использованием каждого из них быстро последовала эволюция устойчивости у большого числа видов насекомых. Фактически к 1976 году более 200 видов насекомых приобрели устойчивость к ДДТ; некоторые виды приобрели множественную устойчивость к четырем или более группам химических инсектицидов.

Во многих случаях устойчивость к инсектицидам является результатом действия одного гена, хотя также происходят множественные другие генетические изменения, которые могут изменять реакцию на инсектициды. У обыкновенной комнатной мухи устойчивость возникает в результате присутствия фермента, называемого ДДТаза, естественная функция которого неизвестна. Мутантные формы фермента превращают ДДТ в относительно безвредное соединение ДДЕ. Устойчивость комара Aedes aegypyti также связана с ферментом ДДТаза, но не с ферментом комнатной мухи.

Развитие устойчивости к инсектицидам настолько распространено, потому что популяции насекомых часто содержат редкие мутантные варианты, которые уже устойчивы. Воздействие инсектицида дает этим мутантам преимущество, и в течение нескольких поколений их частота постепенно увеличивается за счет нормальных типов, пока не останется очень мало нормальных чувствительных типов.

Замечательный принцип популяционной генетики гласит, что устойчивость к инсектицидам может развиваться примерно через 5-50 поколений вредителей, независимо от вида насекомых, географического региона, природы пестицида, частоты и способа применения и других, казалось бы, важных переменных. .Это явление возникает из-за того, что время, необходимое для развития значительной устойчивости, зависит от логарифма общего увеличения частоты гена устойчивости в результате применения пестицидов, которое в широком диапазоне реалистичных значений эффективно ограничивается 5–50 поколениями. Быстрая, повторяющаяся эволюция устойчивости к инсектицидам во многих частях мира отражает действие этого простого математического принципа.

Аналогичная ситуация объясняет повторяющуюся эволюцию устойчивости бактерий к антибиотикам: редкие типы бактерий, содержащие гены устойчивости, предпочтительны в присутствии антибиотика и в конечном итоге вытесняют нормальные чувствительные типы.В этом случае чрезмерное использование недорогих антибиотиков не только в медицине, но и в кормах для животных, рыбоводстве и сельском хозяйстве способствовало развитию устойчивости к антибиотикам у широкого спектра микроорганизмов. Во многих случаях гены устойчивости содержатся в мобильных генетических элементах, которые могут передаваться от одного организма к другому, и их распространение привело к широкому распространению генов устойчивости среди патогенных и непатогенных форм.

Молекулярная эволюция устойчивости к антибиотикам аналогична процессу, который бактерии использовали на протяжении тысячелетий для выработки устойчивости к природным антибиотикам и к почве, загрязненной летальными концентрациями тяжелых металлов.Ген устойчивости, который развивается у одного вида бактерий, может потенциально распространяться среди многих других с помощью молекул, известных как плазмиды, которые передаются между подходящими хозяевами при контакте с клетками. Эти плазмиды иногда улавливают мобильные последовательности ДНК, которые содержат гены, устойчивые к антибиотикам, и придают устойчивость клеткам-хозяевам. Когда антибиотики широко используются и присутствуют в окружающей среде, предпочтение отдается клеткам, содержащим плазмиды устойчивости, и плазмида распространяется.Во многих случаях плазмиды устойчивости приобрели гены одновременной устойчивости к пяти или более химически неродственным антибиотикам. Устойчивость некоторых патогенных бактерий, таких как гонорея, к антибиотикам стала настолько распространенной, что их клиническое лечение серьезно затруднено.

Эволюция устойчивости к инсектицидам у популяций насекомых, устойчивости к антибиотикам в популяциях микробов, устойчивости к гербицидам в популяциях растений и устойчивости к тяжелым металлам в популяциях растений и бактерий была продемонстрирована неоднократно.В любом случае генетическая изменчивость и естественный отбор обеспечивают удивительно эффективный процесс адаптации организмов к окружающей среде. Изучение эволюции и разнообразия жизни на Земле связано с темпом, режимом и моделями такой адаптации.

ЭВОЛЮЦИЯ УСТОЙЧИВОСТИ К ИНСЕКТИЦИДАМ

Некоторые из наиболее ярких примеров эволюции в действии являются результатом естественного отбора на устойчивость к химическим пестицидам в естественных популяциях насекомых и других сельскохозяйственных вредителей.В 1940-х годах, когда химические пестициды были впервые применены в больших масштабах, около 7 процентов сельскохозяйственных культур в Соединенных Штатах было потеряно насекомыми. За первоначальными успехами в борьбе с химическими вредителями последовала постепенная потеря эффективности. Сегодня более 400 видов вредителей приобрели значительную устойчивость к одному или нескольким пестицидам, и 13 процентов урожая в Соединенных Штатах теряется из-за насекомых.

Во многих случаях значительная устойчивость к пестицидам развивалась через 5-50 поколений, несмотря на большие различия в видах насекомых, инсектицидах и методах применения.Теоретическая популяционная генетика помогает нам понять этот очевидный парадокс. Многие виды устойчивости к инсектицидам возникают из-за отдельных мутантных генов. Гены устойчивости часто являются частично доминантными, поэтому изменение частоты гена устойчивости приблизительно определяется уравнением

Image img00021.jpg

, в котором p и q являются, соответственно, частотами генов резистентности и чувствительности, первоначально (время 0) и в момент времени t поколений после применения инсектицида, а s измеряет

.
Обмен это в биологии: 2. Обмен веществ. Пластический и энергетический обмен

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *