Содержание

Математики выяснили, сколько иммунных клеток нужно для защиты от ВИЧ

https://ria.ru/20190619/1555691649.html

Математики выяснили, сколько иммунных клеток нужно для защиты от ВИЧ

Математики выяснили, сколько иммунных клеток нужно для защиты от ВИЧ — РИА Новости, 02.09.2019

Математики выяснили, сколько иммунных клеток нужно для защиты от ВИЧ

Ученые из России и ряда зарубежных научных центров создали компьютерную модель, позволяющую предсказывать вероятность заражения ВИЧ по тому, как много… РИА Новости, 02.09.2019

2019-06-19T11:33

2019-06-19T11:33

2019-09-02T15:36

наука

москва

первый мгму имени сеченова

российская академия наук

московский физико-технический институт

рудн

открытия — риа наука

российский научный фонд

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdn21.img.ria.ru/images/151897/79/1518977985_0:0:800:450_1920x0_80_0_0_7582345ef3d70e73d70eb35d0c4bda17. jpg

МОСКВА, 19 июн – РИА Новости. Ученые из России и ряда зарубежных научных центров создали компьютерную модель, позволяющую предсказывать вероятность заражения ВИЧ по тому, как много «правильных» Т-клеток присутствует рядом с точкой проникновения вируса. Их выводы были опубликованы в журнале Frontiers In Immunology.Вирус иммунодефицита проникает в клетки человека при помощи набора из нескольких белков на поверхности его оболочки. Их структура и устройство защищающего их «щита» из сахаров меняется с каждым новым поколением ВИЧ, что вынуждает иммунную систему вырабатывать новый набор антител. В подавляющем числе случаев вирус становится победителем в этой «гонке вооружений», и эта же особенность мешает ученым создать вакцину от ВИЧ.Через 3-4 года после заражения ВИЧ иммунная система человека часто начинает синтезировать так называемые антитела широкого профиля действия (bnAbs), способные нейтрализовать сразу несколько разновидностей вируса. Это мало в чем помогает организму, так как вирус к этому времени уже успеет глубоко проникнуть во все ткани тела и перейти в хроническую стадию, а иммунитет необратимо ослабевает. Соответственно, как сейчас предполагают многие медики, эту проблему можно преодолеть, если «надрессировать» иммунные клетки производить подобные антитела намного раньше, чем наступит подобное истощение, и превентивно ввести их в организм, или «научить» уже существующие Т-клетки бороться с вирусом на первых стадиях заражения.Бочаров и его коллеги задумались о том, от чего зависит успешное отражение подобных вирусных атак. Для ответа на этот вопрос ученые создали компьютерную модель лимфатического узла – главного и первого «бастиона» иммунной системы в борьбе с ВИЧ и другими патогенами.Они представляют собой небольшие органы яйцеобразной формы, заполненные пористой соединительной тканью, а также большим числом различных иммунных телец, в том числе Т-лимфоцитов, распознающих инфекции, и В-лимфоцитов, своеобразные «фабрики антител».Когда в организм проникает вирус, часть зараженных клеток или сами частицы патогенов попадают сюда вместе с лимфой. Если они не знакомы иммунитету, то Т-клетки попытаются выделить их важнейшие опознавательные знаки и начать производство антител. В том случае, если они уже раньше проникали в организм, лимфоциты могут немедленно опознать зараженные клетки и начать очистку тела от инфекции.В подобном случае, скорость реакции организма будет зависеть от того, как быстро частицы ВИЧ или носители вируса окажутся внутри лимфатических узлов и как быстро они столкнутся с теми Т-клетками, которые уже знают о его существовании. Соответственно, число подобных лимфоцитов и характер их движения по этим органам будет напрямую влиять на то, как много времени пройдет между заражением и иммунным ответом.Почему это важно? Дело в том, что клетки, куда ВИЧ уже успел проникнуть, начинают вырабатывать новые вирусные частицы далеко не сразу, а примерно через 18-24 часа. Соответственно, если иммунитет успеет локализовать и уничтожить зараженные клетки за это время, инфекция будет остановлена, а в противном случае начнется «гонка вооружений», в которой почти всегда побеждает вирус.Бочаров и его команда вычислили минимальное число клеток, необходимое для решения этой задачи, а также раскрыли одно из главных препятствий для создания будущих вакцин от ВИЧ, используя детальную компьютерную модель лимфоузла. Как отмечает пресс-служба Российского научного фонда, поддерживавшего работу российских исследователей, эта модель учитывала все физические особенности устройства этих органов и была построена на базе результатов реальных наблюдений за тем, как движутся Т-клетки в теле человека.Первые же эксперименты с этой виртуальной копией лимфатического узла указали на то, что быстрое отражение вирусных атак потребует от организма или вакцин двух вещей. С одной стороны, примерно 5% клеток, обитающих в этих органах, должно «знать» о существовании ВИЧ и уметь бороться с ним. Это достаточно большой, но достижимый показатель.С другой стороны, эффективность их работы, как обнаружили ученые, будет очень сильно зависеть от того, как будет реагировать соединительная ткань самих лимфоузлов на появление зараженных клеток внутри них. Если она будет разрастаться, как это происходит с данными органами при переходе вируса в хроническую стадию, то скорость движения Т-клеток может снизиться примерно наполовину.В результате этого эффективность их работы заметно снизится, и лимфоциты будут подавлять инфекцию еще до того, как зараженные клетки успеют произвести первую партию новых частиц вируса, лишь в половине случаев. Это, как отмечают исследователи, следует учитывать всем разработчикам вакцин от ВИЧ и также других вирусов, а также создателям иммунотерапий от рака.

https://ria.ru/20171225/1511694278.html

https://ria.ru/20170417/1492434770.html

https://ria.ru/20161013/1479173056.html

москва

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2019

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn24.img.ria.ru/images/151897/79/1518977985_0:0:800:600_1920x0_80_0_0_c64c4b8d95e78c7c31e553e34f0b5ccf. jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

москва, первый мгму имени сеченова, российская академия наук, московский физико-технический институт, рудн, открытия — риа наука, российский научный фонд

МОСКВА, 19 июн – РИА Новости. Ученые из России и ряда зарубежных научных центров создали компьютерную модель, позволяющую предсказывать вероятность заражения ВИЧ по тому, как много «правильных» Т-клеток присутствует рядом с точкой проникновения вируса. Их выводы были опубликованы в журнале Frontiers In Immunology.

«Мы впервые смогли предсказать, как много Т-клеток, нацеленных на уничтожение ВИЧ, необходимо для того, чтобы остановить распространение вируса. Как и любая модель, наша методика не учитывает многих других факторов, но позволяет определить минимальные требования, которые должны учитываться при разработке вакцин от ВИЧ», — рассказывает Геннадий Бочаров из Института вычислительной математики РАН.

Вирус иммунодефицита проникает в клетки человека при помощи набора из нескольких белков на поверхности его оболочки. Их структура и устройство защищающего их «щита» из сахаров меняется с каждым новым поколением ВИЧ, что вынуждает иммунную систему вырабатывать новый набор антител. В подавляющем числе случаев вирус становится победителем в этой «гонке вооружений», и эта же особенность мешает ученым создать вакцину от ВИЧ.

Через 3-4 года после заражения ВИЧ иммунная система человека часто начинает синтезировать так называемые антитела широкого профиля действия (bnAbs), способные нейтрализовать сразу несколько разновидностей вируса. Это мало в чем помогает организму, так как вирус к этому времени уже успеет глубоко проникнуть во все ткани тела и перейти в хроническую стадию, а иммунитет необратимо ослабевает.

25 декабря 2017, 22:00НаукаУченые из США создали лекарство, которое «идеально» подавляет ВИЧ

Соответственно, как сейчас предполагают многие медики, эту проблему можно преодолеть, если «надрессировать» иммунные клетки производить подобные антитела намного раньше, чем наступит подобное истощение, и превентивно ввести их в организм, или «научить» уже существующие Т-клетки бороться с вирусом на первых стадиях заражения.

Бочаров и его коллеги задумались о том, от чего зависит успешное отражение подобных вирусных атак. Для ответа на этот вопрос ученые создали компьютерную модель лимфатического узла – главного и первого «бастиона» иммунной системы в борьбе с ВИЧ и другими патогенами.

Они представляют собой небольшие органы яйцеобразной формы, заполненные пористой соединительной тканью, а также большим числом различных иммунных телец, в том числе Т-лимфоцитов, распознающих инфекции, и В-лимфоцитов, своеобразные «фабрики антител».

Когда в организм проникает вирус, часть зараженных клеток или сами частицы патогенов попадают сюда вместе с лимфой. Если они не знакомы иммунитету, то Т-клетки попытаются выделить их важнейшие опознавательные знаки и начать производство антител. В том случае, если они уже раньше проникали в организм, лимфоциты могут немедленно опознать зараженные клетки и начать очистку тела от инфекции.

В подобном случае, скорость реакции организма будет зависеть от того, как быстро частицы ВИЧ или носители вируса окажутся внутри лимфатических узлов и как быстро они столкнутся с теми Т-клетками, которые уже знают о его существовании. Соответственно, число подобных лимфоцитов и характер их движения по этим органам будет напрямую влиять на то, как много времени пройдет между заражением и иммунным ответом.

Почему это важно? Дело в том, что клетки, куда ВИЧ уже успел проникнуть, начинают вырабатывать новые вирусные частицы далеко не сразу, а примерно через 18-24 часа. Соответственно, если иммунитет успеет локализовать и уничтожить зараженные клетки за это время, инфекция будет остановлена, а в противном случае начнется «гонка вооружений», в которой почти всегда побеждает вирус.

17 апреля 2017, 18:06НаукаБиологи нашли новый «бункер» ВИЧ в организме человека

Бочаров и его команда вычислили минимальное число клеток, необходимое для решения этой задачи, а также раскрыли одно из главных препятствий для создания будущих вакцин от ВИЧ, используя детальную компьютерную модель лимфоузла.

Как отмечает пресс-служба Российского научного фонда, поддерживавшего работу российских исследователей, эта модель учитывала все физические особенности устройства этих органов и была построена на базе результатов реальных наблюдений за тем, как движутся Т-клетки в теле человека.

Первые же эксперименты с этой виртуальной копией лимфатического узла указали на то, что быстрое отражение вирусных атак потребует от организма или вакцин двух вещей. С одной стороны, примерно 5% клеток, обитающих в этих органах, должно «знать» о существовании ВИЧ и уметь бороться с ним. Это достаточно большой, но достижимый показатель.

С другой стороны, эффективность их работы, как обнаружили ученые, будет очень сильно зависеть от того, как будет реагировать соединительная ткань самих лимфоузлов на появление зараженных клеток внутри них. Если она будет разрастаться, как это происходит с данными органами при переходе вируса в хроническую стадию, то скорость движения Т-клеток может снизиться примерно наполовину.

В результате этого эффективность их работы заметно снизится, и лимфоциты будут подавлять инфекцию еще до того, как зараженные клетки успеют произвести первую партию новых частиц вируса, лишь в половине случаев. Это, как отмечают исследователи, следует учитывать всем разработчикам вакцин от ВИЧ и также других вирусов, а также создателям иммунотерапий от рака.

13 октября 2016, 21:36НаукаУченые «навсегда» подавили вирус иммунодефицита в организме обезьяныЛекарство от язв толстой кишки навсегда подавило развитие вируса обезьяньего иммунодефицита, близкого родича ВИЧ, сделав инфекцию относительно «беззубой» и позволив иммунной системе восстановить себя.

Не-я внутри. Как стареет иммунитет человека

Иммунная система животного занята тем, что  отвечает на философский вопрос «что есть я?» на практике. Ее основная функция — отличать «я» от «не я», то есть свое от чужого, и это чужое уничтожать. Задача не из легких, особенно если учесть, что в организме человека живут сотни типов клеток, заполненных десятками тысяч молекул, а атаковать его могут сотни паразитов (и это не считая собственные опухоли). Ответ иммунитета обычно звучит так: «Я — это набор знакомых, привычных молекул. То, что я впервые вижу, — это не я».

Стреляю без предупреждения

Самый простой способ распознать врага — составить его фоторобот, примерный список черт, которыми он может обладать. На молекулярном уровне это тоже возможно: наши паразиты от нас эволюционно очень далеки и в их организме есть множество структур, которые не встречаются у нас. Это, например, кутикулы (плотные покровы) многих червей, клеточные стенки бактерий, капсиды (белковые оболочки) вирусов и так далее. В их составе есть молекулы, которые ни при каких условиях не возникают сами по себе в организме человека, это

образы патогенности, или PAMP (pathogen-associated molecular patterns). На иммунных клетках человека есть к ним рецепторы — своего рода ориентировки: если рецептор распознал РАМР, значит, в организм проник паразит и в него можно стрелять на поражение.

Иногда рецепторы к образам патогенности есть и на обычных, не иммунных клетках организма. Это нужно, чтобы, например, почувствовать вирус, пробравшийся внутрь клетки, и подать сигнал бедствия.

Но в основном патогенный дозор несут профессионалы — клетки врожденного иммунитета. Это макрофаги, которые специализируются на поедании противника (фагоцитозе), и гранулоциты, которые поливают врага токсичными веществами (паралитическими ядами и свободными радикалами).

Как только клетка врожденного иммунитета чувствует присутствие врага, она не только готовится к атаке, но и сигнализирует коллегам об опасности, выделяя провоспалительные белки. Они действуют на окружающие иммунные клетки, заставляя их активнее двигаться и производить больше токсинов. Совокупность этих боевых действий называют воспалением.

Помимо охоты за чужаками, иммунные клетки часто подрабатывают спасателями, разбирая завалы в поврежденных тканях и перемалывая (точнее, переваривая с помощью фагоцитоза) осколки внеклеточных молекул и останки клеточных тел. Но, чтобы вовремя среагировать на чрезвычайное происшествие в том или ином органе, им необходимо распознать сигналы собственных клеток, терпящих бедствие. Такими сигналами служат стрессорные молекулы, или алармины, или DAMP (danger-associated molecular patterns), — вещества, которые в норме не покидают пределов клеток и не оказываются в крови, например ДНК и связанные с ней белки, митохондриальные молекулы или АТФ, энергетическая «валюта» клетки.

Набор ориентировок у врожденного иммунитета невелик и способен распознать только ограниченное число молекул. С этой точки зрения очень удобно, что многие алармины похожи по своей структуре на образы патогенности. Например, жиры из внутренней мембраны митохондрий чем-то напоминают жиры из бактериальных оболочек (и это неудивительно, ведь митохондрия — бывшая бактерия). Поэтому иммунные клетки развивают одинаковое воспаление вне зависимости от того, чей труп встретился на их пути — раненого врага или пострадавшего друга. И эта система эффективна, пока ткани не начинают стареть и умирать начинают буквально все подряд.

Специалисты узкого профиля

Система врожденного иммунитета надежна, но работает медленно и неповоротливо. Военные, которым раздали список врагов, оказываются бессильны, когда враг маскируется под мирных жителей (как это делают, например, раковые клетки) или сбривает усы, становясь хоть немного непохожим на свой фоторобот. Чтобы гарантированно вычислить чужака, позвоночные животные обзавелись системой

приобретенного иммунитета, которая состоит из высокоспециализированных клеток — лимфоцитов.

Каждый В- или Т-лимфоцит знает в лицо лишь одну молекулу на броне врага — антиген. Встретившись с ним, лимфоцит начинает делиться, создавая собственные клоны. Затем новорожденные солдаты атакуют: В-лимфоциты обстреливают врага антителами, а Т-лимфоциты — разрушают его мембрану, чтобы запустить в противнике апоптоз (в тех случаях, когда враг — клетка).

Одержав победу, лимфоциты никуда не исчезают и остаются жить в организме, превращаясь в клетки памяти

. Если тот же враг попробует второй раз сунуться на чужую территорию, Т- и В-клетки отреагируют гораздо быстрее, чем в первый раз: их стало больше и им не нужно размножаться, а можно сразу идти в бой. Именно поэтому, например, человек не болеет столбняком после прививки: вакцина работает как тренажер, запуская образование клеток памяти, и, если столбнячная палочка снова оказывается в крови, лимфоциты уничтожают ее быстрее, чем их хозяин успеет заметить симптомы болезни.

Эта стратегия работает только при том условии, что набор лимфоцитов достаточно разнообразен, чтобы их корпус мог узнать любого захватчика. Чтобы добиться этого разнообразия, молодые лимфоциты в начале своей жизни перекраивают часть своей ДНК, кодирующую рецепторы. Из длинной «инструкции» (гена) клетка случайным образом вырезает отдельные слова, а получившиеся пробелы заполняет первыми попавшимися альтернативами (нуклеотидами). Поскольку в каждой клетке этот процесс идет независимо, на выходе получаются миллионы вариантов. Каждый юный лимфоцит приобретает возможность распознать какой-то один антиген, причем это может быть совершенно любая молекула — встречающаяся в организме человека, или принадлежащая его паразитам, или вообще не существующая в природе.

Следующий шаг — сделать так, чтобы эта система не стреляла по своим. Для этого органы, воспитывающие лимфоцитов (красный костный мозг и тимус, он же вилочковая железа) заполнены специальными клетками. Они показывают юным псам кровавого режима все возможные белки собственного организма и убивают тех, кто признает в них врага. Система жестока: она предоставляет иммунным клеткам свободу выбора, а затем уничтожает тех, кто сделал его неправильно. До зрелости доживает лишь сотая часть,  зато все выжившие лояльны клеточному государству и не опасны для мирного населения.

Контроль за молодыми специалистами продолжается и после выпуска из «военных училищ». В отличие от бойцов врожденного иммунитета, лимфоциты не стреляют по первому сигналу, а ждут сначала одобрения коллег. Распознав свою мишень, лимфоцит будет атаковать, только если его простимулируют другие иммунные клетки (так называемые Т-хелперы) и когда вокруг него соберется много провоспалительных белков.

Если же лимфоцит встречает врага в одиночестве, без поддержки товарищей по иммунной системе, он впадает в анергию — состояние уныния и подавленности, в котором он не способен ни на кого напасть. Этот механизм призван избежать осечек: как и любая живая система, процесс отбора лояльных лимфоцитов не работает со стопроцентной точностью. Некоторые аутореактивные лимфоциты, то есть принимающие собственные антигены организма за чужаков, умудряются пережить суровое наставничество красного костного мозга и тимуса — анергия заставляет их молчать, поддерживая спокойствие в многоклеточном государстве.

И это работает до того момента, пока население не начнет превращаться в подозрительных личностей.

Битва со старостью

С течением времени в тканях начинается разруха. Распадаются вне- и внутриклеточные молекулы, клетки в ответ на это стареют, перестают расти и делиться, зато начинают выделять провоспалительные белки, призывающие иммунные клетки на расчистку завалов.

Часть клеток не выдерживает давления молекулярного мусора и гибнет, выбрасывая наружу стрессорные молекулы. В ответ на это в ткани приходят бойцы врожденного иммунитета и разворачивают там воспаление: не только убирают мусор и поглощают остатки погибших клеток, но и выделяют свои провоспалительные белки, призывая новых бойцов на помощь.

Макрофагов и гранулоцитов время тоже не щадит: несмотря на то что их численность с возрастом меняется несильно, они теряют навык борьбы с патогенами, сохраняя разве что способность к фагоцитозу. Снижается и их подвижность, и, возможно, именно поэтому покинуть ткань после разбора завалов они не способны, становясь постоянными ее обитателями.

Так воспаление превращается в хроническое.

А вот активность приобретенного иммунитета падает. Молодых бойцов становится все меньше, поскольку кроветворные клетки с возрастом делятся хуже. Старая гвардия со своей стороны мешает новым поступлениям занять место в строю, выделяя вещества, подавляющие развитие и активацию юных лимфоцитов. В этом есть своя логика: зачем плодить новобранцев, если войско уже укомплектовано? Но поскольку старые бойцы уже не те, что раньше, и сами по себе менее активны, то весь приобретенный иммунитет страдает от такой дедовщины.

Поэтому его активность восстанавливается после «бомбардировок»: если пожилой пациент подвергается химиотерапии, то многие «деды» погибают, а красный костный мозг и юные лимфоциты начинают работать лучше. Эта процедура, конечно, никоим образом не аналогична омоложению иммунной системы, но некоторым В-клеткам от нее действительно становится лучше.

Кроме того, с возрастом приобретенный иммунитет теряет свой главный козырь — разнообразие. В молодости его сила в том, что на любой внешний антиген, пусть даже самый экзотический, найдется свой специалист.

Но с течением времени в рядах лимфоцитов возникает неравенство: одни клетки уже встретили свой антиген, размножились, повоевали и стали клетками памяти, а другие всю жизнь так и простояли в бесплодном дозоре, если, например, они специализируются на антигенах редкого тропического червя, с которым их хозяин никогда не встречался.

И поскольку часть клеток стареет и погибает, а выжившие тормозят развитие молодых, то получается, что власть в войсках лимфоцитов захватили клоны — потомки тех клеток, что поучаствовали в иммунных сражениях. И когда на пути такого однообразного войска встретится наконец тропический червь, то среди бойцов иммунитета может не найтись умельца, который бы справился с чужаком.

Равновесие нарушается и между двумя видами вооруженных сил: приобретенный иммунитет работает хуже, а врожденный — лучше. В тканях возникает провоспалительная среда — за счет белков, которые выделяют макрофаги и гранулоциты во время разбора завалов. Поэтому лимфоциты, случайно оказавшиеся в тканях и встретившие там антиген, похожий на свою мишень, с большой вероятностью примутся его атаковать. А таких антигенов на лицах порядочных граждан с возрастом становится все больше, поскольку ДНК постепенно накапливает мутации и клетки начинают производить незнакомые лимфоцитам белки. В условиях здорового молодого организма лимфоциты предпочли бы не заметить эти небольшие изменения и впали бы в анергию. Но поскольку вокруг них все больше признаков разрухи и кризиса, они все чаще сталкиваются с искушением ввязаться в драку — со своими собственными клетками. Поэтому во многих возрастных болезнях можно найти иммунную составляющую — например, в атеросклерозе (воспаление возникает в стенке сосудов) или артрите (при этом разрушаются суставные хрящи). С этой точки зрения старость — это одно большое аутоиммунное заболевание, то есть атака организма на себя самого.

Кто я теперь

Происходящее в тканях стареющего организма дискредитирует основную функцию иммунитета — отличать себя от чужого. Вместе с тем это поднимает и теоретический вопрос, о котором иммунологи спорят еще с середины прошлого века: к чему свести «молекулярную идентичность» человека? Какими словами описать, какими методами подсчитать то, что иммунная система понимает «интуитивно»: что есть «я», а что — «не я»?

Вариантов предлагалось множество. Например: «я» — это последовательности белков, закодированные в геноме организма. Или же: «я» — это все молекулы, которые не вызывают у лимфоцитов никаких подозрений (но, например, не молекулы мозга, куда бойцов иммунитета практически не пускают). Или так: «я» — это молекулы, концентрация которых в организме не ниже определенного порога.

Позже на сцене появились микробы. Стало понятно, что они играют важную роль в жизни организма и работе иммунитета — и ситуация усложнилась: кроме «я» (self) и «не я» (non-self), ученые стали говорить еще о «псевдо я» (quasi-self). В эту новую категорию предлагалось отнести микробные антигены, с которыми иммунные клетки контактируют с самого рождения, так что могут считать их почти что частью себя. Именно поэтому большинство бактерий в нашем кишечнике не отторгаются и продолжают сосуществовать с остальным организмом.

В рамках концепции «я»/«не я» старость выглядит как диссоциативное расстройство на молекулярном уровне, потеря границ между собой и окружающим миром.

Возрастные изменения настолько сильно сказываются на молекулярном облике организма, что, столкнувшись со старым знакомым в очередной раз, иммунная система не узнает его и хватается за пистолет.

Чтобы вписать процессы старения в парадигму иммунитета, итальянский геронтолог Клаудио Франчески предложил новую концепцию — «жидкое я» (liquid self). Под этим он имеет в виду, что к «я» следует свести набор антигенов, к которым иммунная система толерантна в каждый момент времени, и набор этот не постоянен, а текуч и зависит от иммунобиографии — событий в жизни иммунной системы.

Франчески представляет свою концепцию с помощью знаменитого «ландшафта Уоддингтона». Эту модель биолог Конрад Уоддингтон предложил для описания клеточных судеб в развитии организма: клетка катится по ложбине, как шарик по колее, и время от времени совершает выбор — например, между тем, стать ей клеткой легкого или клеткой кишечника. И чем дальше друг от друга находятся две колеи, тем сложнее клетке перескочить между ними, именно поэтому в нашем организме практически не бывает трансдифференцировки, то есть смены клеточных профессий.

Франчески рисует похожую картину для антигенов. Каждая молекула в начале жизни организма может скатиться либо в правую сторону ландшафта («свое»), либо в левую («чужое»). На это влияют ранний отбор лимфоцитов (который уничтожает всех, кто покусится на белки организма) и взаимоотношения с симбиотическими бактериями, которые требуют от организма признания ряда микробных молекул «своими».

Но после первого разделения судьба антигена может измениться — например, если на нем повиснет остаток углевода (это часто случается с белками в стареющем межклеточном веществе), он станет вызывать больше подозрений. И наоборот, вещество, бывшее изначально чужеродным, может попасть в организм через рот, и тогда кишечные бактерии могут подавить иммунный ответ на него (феномен «оральной толерантности») — и организму придется в какой-то степени смириться с чужаком, которому дали убежище критически важные для организма союзники.

Как работает иммунитет человека? Подробный разбор

Партнерский материал с компанией SANTO

№1. Что такое иммунитет?

Иммунитет человека – это состояние невосприимчивости к различным инфекционным и вообще инородным для генетического кода человека организмам и веществам. Иммунитет организма определяется состоянием его иммунной системы, которая представлена органами и клетками.

Функции иммунной системы:

  • сохранять постоянство внутренней среды организма;
  • сохранять невосприимчивость к различным инфекционным микроорганизмам, вирусам, паразитам, другим чужеродным агентам, способным привести к генетическим сбоям.

То есть иммунитет человека – это когда организм не только не болеет разными инфекциями, но и не поражается опухолями, когда у человека заживают быстро раны и порезы на коже, когда в нём не поселяются различные паразиты и так далее. То есть это более широкое понятие, чем мы привыкли думать.

№2. Какие органы входят в иммунную систему?

  • Красный костный мозг, селезёнка и тимус (или вилочковая железа) – центральные органы иммунной системы.
  • Лимфатические узлы и лимфоидная ткань в других органах (например, в миндалинах, в аппендиксе) – это периферические органы иммунной системы.

Миндалины и аппендикс – необходимые для иммунной системы органы. Основная задача органов иммунной системы человека – выработка защитных клеток.

№3. Какие бывают клетки иммунной системы?

  • Т-лимфоциты. Делятся на различные клетки: Т-киллеры убивают микроорганизмов, Т-хелперы помогают распознавать и убивать микробов. Есть ещё другие Т-виды.
  • В-лимфоциты. Главная их задача – выработка антител. Антитела – это вещества, которые связываются с белками микроорганизмов (антигены, то есть инородные гены), инактивируют их и выводятся из организма человека, тем самым убивая инфекцию внутри человека.
  • Нейтрофилы. Эти клетки пожирают инородную клетку, разрушают её, при этом также разрушаясь. В итоге появляется гнойное отделяемое. Характерный пример работы нейтрофилов – воспалённая рана на коже с гнойным отделяемым.
  • Макрофаги. Эти клетки также пожирают микробов, но сами не разрушаются, а уничтожают их в себе либо передают на распознавание Т-хелперам.
  • Эозинофилы. Вырабатывают вещества, которые разрушают паразитов в организме человека. Характерное проявление работы эозинофилов – аллергическая реакция на гельминтов (на глисты).

Есть еще несколько клеток, которые выполняют узкоспециализированные функции. Но они интересны только узким специалистам и учёным.

№4. Виды иммунитета

  • Клеточный иммунитет представлен клетками: Т-киллеры, Т-хелперы, макрофаги, нейтрофилы и так далее.
  • Гуморальный иммунитет представлен антителами и их источником – В-лимфоцитами.

Эта градация очень важна, так как многие лекарственные препараты действуют либо на один, либо на другой вид иммунитета.

Есть ещё одна градация – по степени специфичности:

  • неспецифический (или врождённый) – например, работа нейтрофилов в любой реакции воспаления с образованием гнойного отделяемого;
  • специфический (приобретённый) – например, выработка антител к вирусу папилломы человека или к вирусу гриппа.

Третья классификация – виды иммунитета, связанные с медицинской деятельностью человека:

  • естественный – появившийся в результате болезни человека, например, иммунитет после ветрянки;
  • искусственный – появившийся в результате прививок, то есть введения ослабленного микроорганизма в организм человека, в ответ на это в организме вырабатывается иммунитет.

№5. Например

Чтобы было понятнее, вот вам пример: обыкновенные юношеские бородавки (на самом деле вирус папилломы человека третьего типа).

  • В микротравму кожи (царапина, потёртость) проникает вирус, постепенно проникает дальше в глубокие слои поверхностного слоя кожи. В организме человека ранее ещё его не было, поэтому иммунная система человека ещё не знает, как надо на него реагировать.
  • Вирус встраивается в генный аппарат клеток кожи, и они начинают неправильно расти, принимая уродливые формы.
  • Таким образом формируется бородавка на коже. Но этот процесс не проходит мимо иммунной системы. Первым делом включаются Т-хелперы. Они начинают распознавать вирус, снимают с него информацию, но уничтожить его сами не могут, так как его размеры очень малы, а Т-киллер могут убить только более крупные объекты типа микробов.
  • Т-лимфоциты передают информацию В-лимфоцитам, и те начинают выработку антител, которые проникают через кровь в клетки кожи, связываются с частичками вируса и таким образом обездвиживают их, а затем весь этот комплекс (антиген-антитело) выводится из организма.
  • Т-лимфоциты передают информацию о заражённых клетках макрофагам. Те активизируются и начинают постепенно пожирать измененные клетки кожи, уничтожая их. А на месте уничтоженных постепенно нарастают здоровые клетки кожи.

Весь процесс может занимать от нескольких недель до месяцев и даже лет. Всё зависит от активности как клеточного, так и гуморального иммунитета, от активности всех его звеньев. Ведь если, например, в какой-то период времени выпадает хотя бы одно звено, то рушится вся цепочка, и вирус беспрепятственно размножается, внедряясь во всё новые клетки, способствуя появлению новых уродливых бородавок.

№6. Хороший и плохой иммунитет

Наука пока еще не знает, каким образом запускаются те или иные аутоиммунные процессы в организме. Например, когда иммунная система человека ни с того ни с сего начинает воспринимать собственные клетки как чужеродные и начинает с ними бороться.

  • Хороший иммунитет – это состояние полной невосприимчивости к различным инородным агентам. Внешне это проявляется отсутствием инфекционных заболеваний, крепким здоровьем человека. Внутренне это проявляется полной работоспособностью всех звеньев клеточного и гуморального звена.
  • Плохой (слабый) иммунитет – это состояние восприимчивости к инфекционным заболеваниям. Проявляется слабой реакцией того или иного звена, выпадением отдельных звеньев, неработоспособностью тех или иных клеток. Причин его снижения может быть довольно много, и лечить его надо, устраняя все возможные причины.

№7. Зависит ли иммунитет от образа жизни?

Любопытный факт: связь между образом жизни и способностью организма сопротивляться болезням на сегодняшний день не доказана. Тем не менее специалисты считают, что стратегии здорового образа жизни вероятнее всего положительно влияют и на иммунитет. В миллион первый раз повторим правила, выполнять которые имеет смысл:

  • Бросьте курить
  • Придерживайтесь сбалансированной диеты с большим содержанием фруктов и овощей, с преобладанием цельнозерновых продуктов над мучными, с невысоким содержанием насыщенных жиров.
  • Избавьтесь от избыточного веса.
  • Ограничьте употребление алкоголя.
  • Начните высыпаться уже, наконец.
  • Не провоцируйте инфекции: мойте руки, фрукты и овощи, тщательно готовьте мясо.
  • Держите под контролем кровяное давление, регулярно проходите обследования, рекомендуемые для вашей возрастной группы или группы риска по заболеванию (если вы входите в одну из них).

№8. Помогают ли иммунитету витамины и БАДы?

Если вы нормально питаетесь, много двигаетесь и высыпаетесь, нужды в витаминах и минералах у вашего организма нет. Но если вы сидите на строгой диете либо ваш желудок и кишечник плохо усваивает питательные вещества, вам необходимо принимать их в медикаментозной форме. Вот несколько нутриентов, которые стоит рассмотреть в качестве добавок к питанию:

  • Витамин А. Доказана связь дефицита витамина А в организме со сниженной функцией иммунной системы и повышением риска инфекций.
  • Витамин В6. Дефицит витамина В6 снижает способность лимфоцитов к дифференцировке в Т-клетки и В-клетки. Умеренные дозы витамина помогают восстановить эту способность.
  • Витамин D. Его роль в работе иммунной системы неоспорима. Витамин D, вырабатываемый в организме под воздействием солнечного света, давно известен как важный фактор в борьбе с туберкулёзом, в профилактике рака, рассеянного склероза, а также сезонного гриппа. Эксперты рекомендуют принимать в виде добавки витамин D3 (не D2 – эта форма плохо усваивается). Полезен и рыбий жир, содержащий помимо D витамин А и полезные Омега-3 жирные кислоты.
  • Цинк. Этот микроэлемент необходим для нормального функционирования Т-клеток и других клеток иммунитета. Рекомендуемая дневная доза цинка – 15-25 мг, но не более того. Высокие дозы производят обратный эффект.

№9. Влияет ли стресс на сопротивляемость организма?

Экспериментов в этой сфере не проводили – врачи считают, что это не этично. Поэтому учёным приходится довольствоваться экспериментами на животных и некоторыми наблюдениями над миром людей.

Так, подопытные мыши, инфицированные вирусом герпеса, в условиях стресса продемонстрировали снижение активности Т-клеток. Сниженную продукцию лимфоцитов продемонстрировали младенцы индийской макаки, разлучённые с матерью.

Учёные наблюдали снижение активности Т-клеток у пациентов в депрессии, а также у разведённых мужчин по сравнению с женатыми.

Снижение ряда иммунных показателей продемонстрировали жители Флориды, потерявшие жильё после урагана Эндрю, а также работники больниц Лос-Анджелеса после землетрясения.

Резюме: то, что от стресса иммунитет падает, доказано. Но то, что стрессующие люди болеют чаще весёлых, не доказано.

№10. Понижают ли иммунитет низкие температуры?

Если вы вышли на прогулку зимой и слегка замёрзли, от этого ваш иммунитет вряд ли снизится. На сегодняшний день наука считает, что простуда, как это ни парадоксально звучит, не связана с простыванием.

Чтобы доказать эту гипотезу, учёные погружали добровольцев в холодную воду, подвергали их воздействию температур, близких к 0°С, изучали обитателей научных станций Антарктиды и северных районов Канады. Результаты были неоднозначными.

С одной стороны, канадские исследователи заметили повышение заболеваемости респираторными инфекциями у лыжников в условиях длительных тренировок на морозе. В то же время неясно, было ли это результатом низких температур, либо других факторов (большой физической нагрузки, сухости воздуха).

Так что одевайтесь комфортно, берегитесь переохлаждения и обмораживаний, а за иммунитет не волнуйтесь: скорее всего от холода он не пострадает.

№11. Бонус: эхинацея, чеснок и лимон не помогают иммунитету

Самая распространённая рекомендация при первых признаках простуды или гриппа – принять высокую дозу витамина С. Однако наука так и не доказала, что витамин С как-то помогает нашему иммунитету. То же самое с эхинацеей: во время исследований она не продемонстрировала полезности. Нет убедительных данных и об эффективности чеснока. Однако доказано, что в пробирке чеснок способен бороться с бактериальной, вирусной и грибковой инфекциями. Вполне возможно, что чеснок не бесполезен при простудах, хотя действует он, судя по всему, не через иммунную систему.

Иммунная система и ВИЧ

Иммунная система и ВИЧ

Как работает иммунная система (до появления ВИЧ)

Некоторые способы защиты от инфекций достаточно просты:

  • Например, ваша кожа является основным барьером

Если кожа у вас повреждена, например, есть небольшой порез или царапина (для вирусов типа ВИЧ) или повреждения дыхательных путей (в случае туберкулеза), ваше тело будет использовать разные клетки для атаки и разрушения новой инфекции.

Говоря об иммунной системе, обычно используется два медицинских термина:

  • Антиген – слово для обозначения маленьких частиц вызывающего инфекцию материала, разрушенного в теле, которые распознаются иммунной системой.
  • Антитело – тип протеина, производимого определенными белыми кровяными тельцами в ответ на появление чужеродных веществ (антигенов). Антитела связаны только с определенными антигенами. Такое связывание помогает разрушать антигены. Одни антитела разрушают антигены непосредственно, другие облегчают процесс разрушения антигенов белыми кровяными тельцами.

КЛЕТОЧНЫЙ И ГУМОРАЛЬНЫЙ ИММУНИТЕТ

Ваш организм справляется с разными инфекциями двумя основными путями:
1) Реакция гуморального иммунитета основана на антителах.
Обычно ВИЧ диагностируется на основе анализа на антитела, наблюдающий реакцию организма на ВИЧ. Обычно реакция начинается на протяжении двух-трех недель, но количество антител достаточное для определения тест-системой образуется в течение 3-6 месяцев («период окна»).
2) Клеточный иммунитет основывается на реакции клеток CD4 и CD8
Т-клетки являются одним из видов белых кровяных телец (лимфоцитов). Основными видами Т-клеток являются клетки CD4 и CD8. Клетки CD4 иногда называют клетками-помощниками (T-хелперы), так как они мобилизуют иммунную систему, посылая сигналы клеткам CD8. Клетки CD8, в свою очередь, называют клетками-убийцами (Т-киллеры), так как они распознают и убивают клетки, зараженные вирусом. Иногда эти процессы и функции частично совпадают. В целом, ваш организм использует клеточный иммунитет для борьбы с вирусами и для борьбы с ВИЧ. Макрофаги – другой тип белых кровяных телец чуть больше размером, которые поглощают или подавляют инфекции или отходы мертвых клеток. Они также подают сигналы другим клеткам иммунной системы.

КАК ВИЧ ВЗАИМОДЕЙСТВУЕТ С ИММУННОЙ СИСТЕМОЙ

ВИЧ – вирус, с которым организму особенно трудно справляться. Это происходит оттого, что вирус использует для собственного воспроизводства те же клетки, которые использует организм для борьбы с инфекцией. ВИЧ-инфекция заставляет инфицированные клетки отмирать быстрее, а также давать сигналы другим клеткам отмирать быстрее.

Эти два фактора напоминают собаку, гоняющуюся за собственным хвостом!

  • ВИЧ-инфекция заставляется организм производить больше клеток CD4 для борьбы с новым вирусом.
  • Новые клетки становятся новыми мишенями для инфицирования и репродукции ВИЧ
  • Организм отвечает тем, что производит больше клеток для противодействия вирусу.

Через некоторое время Т-клетки, в которые проник ВИЧ, истощаются и погибают (у большинства людей через 6 месяцев после инфицирования). Через много лет организм чрезмерно устает, иммунная система изнашивается.

Эту часть тяжело понять. Основная мысль состоит в том, что ВИЧ изматывает иммунную систему, производя все больше и больше клеток.

Тем не менее, эти клетки также быстро умирают и иммунная система работает без успеха. Поэтому количество клеток CD4 в вашем организме снижается.

АРВ терапия блокирует быструю репродукцию ВИЧ и приводит иммунную систему вашего организма почти в нормальное состояние.

КОЛИЧЕСТВО CD4 КАК «СУРРОГАТНЫЙ МАРКЕР»

Модель количества CD4 после инфицирования ВИЧ без терапии

Количество CD4 (полное название: количество CD4+ Т-лимфоцитов, но также называют количество CD4+ Т-клеток или Т4) – это результат анализа крови, который показывает, сколько таких клеток содержится в кубическом миллиметре крови.

Количество CD4 является очень хорошим «суррогатным маркером» для определения того, насколько ВИЧ поразил иммунную систему. Оно указывает на риск других инфекций и когда необходимо начинать лечение.

Среднее количество CD4 для ВИЧ-негативного человека колеблется между 600 и 1600, но у некоторых людей этот уровень может быть выше или ниже.

  • Через несколько недель после инфицирования ВИЧ количество CD4 обычно падает.
  • Потом, по мере того, как иммунная система начинает сопротивляться, оно снова повышается, хотя не до того уровня, который был до инфицирования ВИЧ.
  • Этот уровень обычно называют контрольной точкой CD4, которая, как правило, стабилизируется на протяжении 3-6 месяцев после инфицирования, но этот процесс может продолжаться гораздо дольше.
  • В последующем количество CD4 с годами постепенно снижается. Средний уровень падения количества CD4 составляет около 50 клеток/мм3 ежегодно. В зависимости от человека, эта скорость может быть выше или ниже.

Иммунная система большинства людей успешно контролирует ВИЧ, не требуя лекарств долгие годы.

КАК БЫСТРО ПРОГРЕССИРУЕТ ВИЧ У РАЗНЫХ ЛЮДЕЙ

Время, на протяжении которого происходит падение количества CD4 (например, до уровня 200 клеток/мм3), различно для разных людей.

Приблизительное время снижения количества CD4 до уровня 200 клеток/мм3 у ВИЧ+ людей:

  • <5% — на протяжении 1-2 лет (быстрое прогрессирование)
  • 10% — на протяжении 3-4 лет
  • 70% — на протяжении 5-9 лет
  • 10% — на протяжении 10-12 лет

<5% — не будет падения количества CD4 даже после 10-15 лет (длительное медленное прогрессирование)

У тех, кто был серьезно болен в момент инфицирования (в период сероконверсии), снижение количества CD4 зачастую происходит быстрее.

Не существует другого способа определения скорости прогресса у человека, кроме мониторинга количества CD4 на протяжении времени.

Те, у кого прогресс происходит быстрее и быстрее снижается количество CD4, будут иметь такую же хорошую и сильную реакцию на терапию, как и те, у кого прогресс протекает медленнее.

Интерпретация результатов CD4: количество CD4 и процент CD4

Одно только количество CD4 о многом не говорит. Чтобы увидеть тенденцию, необходимо несколько результатов на протяжении времени. Когда есть несколько результатов, вы сможете увидеть, происходит снижение или повышение, какая скорость изменений или стабилизации.

Количество CD4 может падать или расти в зависимости от времени дня, от жирности пищи, которую вы поели, не поднимались ли вы только что быстро по лестнице, есть ли у вас другие инфекции, или просто в данном образце крови было больше или меньше клеток.

Поэтому тенденция показывает средний уровень результатов. Каждая точка на линии означает отдельное «абсолютное» показание количества CD4. Это количество клеток CD4 в кубическом миллиметре (клеток/мм3) или микролитре (клеток/uL) крови. В научных работах это обычно обозначается как «клеток х 106/литр».

Сплошная линия показывает среднее между этими результатами – и демонстрирует, что в данном примере наблюдается тенденция падения CD4 со временем. Если результат вашего анализа неожиданно высокий или низкий, тогда, если возможно, необходимо его подтверждение путем проведения второго анализа.

Процент CD4 (CD4 %) иногда является более стабильным показателем того, произошли ли изменения в иммунной системе. Это процент клеток CD4 среди всех лимфоцитов.

Процент CD4 около 12-15% соответствует количеству CD4 ниже 200 клеток/мм3. Процент CD4 около 29% соответствует количеству свыше 500 клеток/мм3, но для более высоких значений диапазон шире.

Для ВИЧ-негативного человека такой процент в среднем составляет около 40. Абсолютное количество CD4 не вычисляется для детей, для них используется процент CD4.

Различия между взрослыми и детьми

  • У детей обычно количество CD4 гораздо выше, чем у взрослых.
  • У младенцев количество CD4 выше, чем у детей.
  • Со временем, по мере взросления, количество CD4 постепенно снижается.
  • Так как у детей существуют огромные различия в количестве CD4, мониторинг состояния детей с ВИЧ проводят по проценту CD4, а не количеству.

Иммунолог Марк Головизнин о системе иммунитета человека — Реальное время

Марк Головизнин о том, как работает система иммунитета человека и какие вирусы живут в нашем теле

«Может ли иммунная клетка действовать целесообразно — в интересах всего организма или других клеток, которые съедят остатки «пришельца» и поделятся с ней? Эти аспекты поведения иммунных клеток нуждаются в выводе из «научного бессознательного» и моделировании. А то нередко мы сами изобретаем иммунные функции и изучаем не то, что есть на самом деле, а какие-то наши собственные, возможно, иллюзорные представления об иммунитете», — рассуждает кандидат медицинских наук, доцент МГМСУ Марк Головизнин. В интервью «Реальному времени» он рассказал, почему иммунная система похожа на муравейник, какие признаки позволяют считать вирусы живыми организмами и имеет ли иммунитет единое управление.

«Из всех микроорганизмов, которые живут в человеке, совсем немногие оказываются «вредителями»

— Какие вирусы обычно живут в теле человека? Почему они не наносят ему особого вреда?

— Во-первых, действительно, в нашем организме живут вирусы, заселившие его в процессе жизни человека — например, всем известный вирус герпеса или менее известный вирус Эпштейна-Барра. Вообще, человек — это суперорганизм, который населен не только вирусами, но и огромным количеством бактерий. Весь кишечник населен бактериями, которые во многом являются сапрофитами и работают на благо организма. Бактерии и вирусы живут в бронхолегочных структурах, на коже, слизистых оболочках. То есть существует определенный симбиоз человека и бактерий, вирусы также принимают в этом участие.

Второй момент: в течение эволюции много миллионов лет назад в геном млекопитающих встроились гены ретровирусов (аналогичных чем-то современному вирусу СПИДа) и начали продуцировать ряд белков иммунной системы, то есть вирусы стали «антивирусами», если говорить компьютерным языком. Это эволюционная биология действительно вызывает удивление, но это так: мы — суперорганизм.

— Вирусы проникают в ребенка, когда он находится в утробе матери?

— Не только вирус, но и целый ряд даже крупных бактерий могут проникать транспланцентарно. На этом было основано лечение детского туберкулеза. Знаменитая прививка вакциной БЦЖ возникла потому, что заражение младенцев внутриутробно или в момент родов от больных матерей создавало огромную проблему. Младенцы гибли от тяжелых форм туберкулеза. Микробактерия туберкулеза по сравнению с вирусом — это динозавр по сравнению с мышкой. Поэтому, конечно, вирус и подавно проходит через целый ряд биологических барьеров, это нормально.

Фото yandex.ru
Знаменитая прививка вакциной БЦЖ возникла потому, что заражение младенцев внутриутробно или в момент родов от больных матерей создавало огромную проблему

— Почему же вирусы не наносят особого вреда ребенку в утробе?

— Существует специализированная система иммунитета. Это подвижные клетки — лимфоциты и макрофаги, которые взаимодействуют со всеми пришельцами и каким-либо образом ограничивают их активность. Из всех микроорганизмов, которые живут в человеке, совсем немногие оказываются «вредителями». Для этого должны возникнуть какие-то специфические условия, когда иммунная система позволяет развиваться патогенным возбудителям.

Система иммунитета, если упростить наш рассказ о ней, дуалистична. Есть врожденный иммунитет, который имеется у новорожденного и присущ ему вне зависимости от контакта с окружающей средой. А есть приобретенный иммунитет, который развивается уже в процессе контакта организма с окружающей средой. Они оба работают для того, чтобы организм выжил. Часть иммунных клеток относится к врожденному иммунитету, другая часть — к приобретенному.

— Кстати, врожденный иммунитет различается у людей с разных континентов?

— Врожденный иммунитет — это тоже сложная система. Клетки, принадлежащие ей, имеют рецепторы, распознающие так называемые «образы патогенности» — это эволюционно консервативные белки, присущие огромному количеству видов и типов различных микроорганизмов. И врожденный иммунитет реагирует именно на них. То есть это система «ковровых бомбардировок», она не является строго специфичной, действующей против конкретного вируса или конкретной бактерии. Судя по существующим исследованиям, эти «образы патогенности» одинаковы у многих микроорганизмов, где бы они ни существовали.

А приобретенный иммунитет гораздо более специфичная система, которая имеет и расовые, и региональные, и индивидуальные особенности.

«Вне всякого сомнения, вирус — живой организм»

— Вирус можно отнести к живым организмам?

— Есть не всех удовлетворяющее определение Энгельса, что жизнь — это способ существования белковых тел. Вирус является «белковым телом». Помимо этого, он обладает молекулами наследственности — либо ДНК, либо РНК. То есть он может размножаться, он производит себе подобных, иногда в больших количествах, как мы сейчас видим в случае с коронавирусом. Он приспосабливается к окружающей среде, поэтому, вне всякого сомнения, вирус — живой организм. Хотя науке известны живые белковые организмы, не содержащие молекулы нуклеиновых кислот, так называемые прионы, возбудители прогрессирующих нервных заболеваний человека и животных. Но это уже вопрос на стыке иммунологии, медицины и философии.

Возвращаясь к вирусу: он имеет три очень существенных признака живых организмов — это наличие белка, воспроизведение себе подобных с помощью нуклеиновых кислот и обмен информацией с внешней средой.

Фото lentachel.ru
Вирус имеет три очень существенных признака живых организмов — это наличие белка, воспроизведение себе подобных с помощью нуклеиновых кислот и обмен информацией с внешней средой

— Объясните, каким образом наш организм постоянно сканируется на наличие вирусов?

— Иммунология как наука находится в очень интересном двойственном положении. С одной стороны, безусловно, у нас в мозгу есть некая доминанта, наша индивидуальность, которая ставит вопрос — «Я или не Я». И, раз есть наша психическая и биологическая индивидуальность, то должны быть факторы, которые нас защищают. Второй момент: в нашем организме объективно сосуществуют разные вирусы, бактерии-сапрофиты, патогены, и есть подвижные «иммунные» клетки — фагоциты, лимфоциты, которые взаимодействуют с пришельцами, работают в организме. И вопрос, действительно они имеют цель защищать нас или нам просто выгодно так думать?

Лично я думаю, что подвижные иммунные клетки — это определенного рода муравейник. Они живут в нас собственной сложной жизнью, в том числе в ходе этой жизнедеятельности они осуществляют определенную защитную функцию, осознавая или не осознавая это. Другое дело, что наши представления об их роли могут не совпадать с реальностью.

И так как мы суперорганизм, то бактерии и вирусы участвуют в формировании нашей иммунной системы. И если по каким-то причинам кишечник или другие органы человека на ранних сроках жизни не заселяются бактериями, то и иммунная система или не развивается, или развивается очень плохо. Есть такие лабораторные животные, чей кишечник лишен флоры, и их иммунная система, особенно приобретенный иммунитет, имеет признаки тотального недоразвития.

В нашем суперорганизме иммунитет развивается в контакте с внешней средой, начиная с внутриутробного состояния и кончая подростковым периодом. Активируется врожденный иммунитет, затем его догоняет в развитии иммунитет приобретенный. И что особенно важно: в иммунной системе должны развиться и тормозные (супрессорные) механизмы. Так называемый цитокиновый шторм — свойство врожденного иммунитета, который легко разогнать, но трудно остановить. Приобретенный иммунитет гораздо мобильнее. Он имеет «точечную активацию» на конкретный антиген и развитые супрессорные механизмы, тормозящие иммунную реакцию когда нужно. Кроме этого, существует орган иммунитета — вилочковая железа (тимус), где изолируются и гибнут те иммунные клетки, которые могут атаковать не чужие, а свои структуры. Когда есть развитый врожденный иммунитет, а приобретенный иммунитет, и особенно супрессорные механизмы, развиты плохо, цитокиновый шторм не остановить.

Фото vesti.ua
Так называемый цитокиновый шторм — свойство врожденного иммунитета, который легко разогнать, но трудно остановить

«Иммунную реакцию можно сравнить с автомобилем — если он разогнался, а тормоза не работают, понятно, что происходит»

— Что такое цитокины?

— Это небольшие белковые молекулы, которые выделяются одними иммунными клетками, допустим, лимфоцитами, макрофагами, моноцитами, чтобы сигнализировать и взаимодействовать с другими клетками. Есть даже такое понятие — хелперный эффект от английского слова «helper» — помощник. Предположим, чтобы лимфоцит вырабатывал антитела, на него нужно воздействовать этими цитокинами, чтобы он активировался, и делает это другая клетка, то есть возникает своеобразный «диалог». Благодаря цитокинам было доказано, что иммунная система — действительно система, хотя долгое время это было умозрительное понятие. Еще Мечников постулировал наличие иммунной системы, но доказать этого в начале ХХ века он не мог. Когда лет 30—40 назад были открыты цитокины, стало ясно, как иммунные клетки контактируют между собой. И это происходит в любой ситуации. Во время воспаления этот диалог приобретает особую интенсивность, и происходит массовый выброс цитокинов.

Это было известно и до коронавируса. Например, во время сепсиса, когда бактерии попадают в кровь и очень усиленно там размножаются, иммунные клетки отвечают массивным выбросом цитокинов. Такое явление и получило название «цитокиновый шторм». И, как оказалось, это палка о двух концах, потому что этот шторм не только помогает, но и бьет по самому организму. Возникает лихорадка, падение артериального давления, генерализованное повышение проницаемости сосудов, поскольку цитокины действуют не только на иммунные клетки, но и на клетки сосудов. Далее происходит нарушение свертываемости крови, большой выход жидкости в ткани, там развиваются вторичные инфекции, и человек может погибнуть в результате каскада этих гиперреакций.

Еще один пример, когда иммунная система «бьет по своему» — это аллергия. У аллергиков возникает повышенная — неадекватная реакция на те раздражители (пыльцу, например), на которые большинство человечества не реагирует. Это тоже наследственно обусловленный дефект иммунных супрессорных механизмов.

И скорее всего, люди, которые реагируют на вирусную инфекцию цитокиновым штормом, тоже имеют какие-то наследственные дефекты, до конца еще не изученные. Нынешняя пандемия должна стимулировать изучение этих факторов.

То есть цитокиновый шторм — это в какой-то мере дисгармония между врожденным иммунитетом, который типо- или группоспецифичен, который легко активировать и труднее остановить, и приобретенным иммунитетом, который должен ограничивать иммунную реакцию действием против конкретных возбудителей, а также вовремя осуществлять ее торможение. Иммунную реакцию тем самым можно сравнить с автомобилем, если он разогнался, а тормоза не работают, понятно, что происходит.

Фото scientificrussia.ru
Цитокины — небольшие белковые молекулы, которые выделяются одними иммунными клетками, допустим, лимфоцитами, макрофагами, моноцитами, чтобы сигнализировать и взаимодействовать с другими клетками

«Есть ли у иммунной системы единое управление? Это пока дискуссионный вопрос»

— Может ли иммунная клетка осознавать свои действия?

— Такой вопрос был поставлен еще перед Мечниковым. Современная иммунология началась немногим более ста лет назад, когда был открыт фагоцитоз. Известно поэтическое описание фагоцитоза, когда Мечников воткнул шип в тело морской звезды и увидел собравшиеся вокруг раны клетки. Но тогда все было не так просто, как нам кажется теперь. В то время борьбы с религией перед ним был поставлен вопрос: «Защита — это прерогатива высших организмов. Мы можем защищать потомство, животные тоже. То есть вы хотите сказать, что клетки обладают функцией разума, могут действовать целесообразно?». И на этот вопрос Мечников смог ответить не прямо, а лишь косвенно. Как биолог-эволюционист, он показал, что фагоцитоз не «дар божий», он появился на определенных этапах эволюции живых организмов. А во-вторых, пришло на помощь внутриклеточное пищеварение: фагоцит — это заглатывающая клетка. Это помогло Мечникову обойти сложный вопрос о «целеполагании» в иммунологии.

Но многие категории иммунологии до сих пор существуют в «научном бессознательном». Есть, например, понятие «лимфоцит-киллер». До недавнего времени оно было известно только иммунологам, сейчас все могут понять, что это лимфоцит, который убивает внедрившийся микроорганизм, но при этом его не съедает. Зачем же он это делает? Может ли иммунная клетка действовать целесообразно — в интересах всего организма или других клеток, которые съедят остатки «пришельца» и поделятся с ней? Эти аспекты поведения иммунных клеток нуждаются в выводе из «научного бессознательного» и моделировании. А то нередко мы сами изобретаем иммунные функции и изучаем не то, что есть на самом деле, а какие-то наши собственные, возможно, иллюзорные представления об иммунитете.

— У иммунной системы есть единое управление?

— Это вопрос, о котором ученые до сих пор спорят. В иммунной системе есть своя иерархия, но не такая строгая, как в нервной системе, где имеется головной мозг, спинной мозг, периферический нервный аппарат. С нервной системой все понятно, и во многом иммунологи, изучая иммунитет, принимали ее в расчет. Что касается иммунной системы, ясно одно: есть подвижные клетки, которые мигрируют по всему организму, в результате выделения цитокинов могут собираться в одном или другом месте, а есть иммунные органы, где эти клетки созревают — костный мозг, где созревают лимфоциты, продуцирующие антитела, и есть вилочковая железа, где созревают Т-лимфоциты (тимусные) — «контролирующие» клетки приобретенного иммунитета. Прохождение через тимус — это «обучение», чтобы иммунная система вела себя прилично и не убивала собственные клетки, не развивала гипериммунный ответ, от которого человек может погибнуть.

Но существует ли такое постоянное управление иммунитетом из единого центра, каковым для нервной системы является головной мозг, пока еще вопрос дискуссионный. По крайней мере иммунная система из всех регуляторных систем наиболее подвижна. То есть, видимо, ее управление диктуется конкретной ситуацией.

Матвей Антропов

Справка

Марк Головизнин — кандидат медицинских наук, доцент кафедры внутренних болезней стоматологического факультета МГМСУ им. А.И. Евдокимова, член Совета ассоциации медицинских антропологов. Сфера научных интересов: иммунология, интердисциплинарные исследования, медицинская антропология.

ОбществоМедицина

Harvard Business Review Россия

Организм человека — слаженный оркестр, важную скрипку в котором играет иммунная система. Каковы ее функции, как ее поддерживать и что происходит, когда она дает сбой, рассказывает доктор медицинских наук, профессор, академик РАН и РАМН, президент Российской ассоциации аллергологов и клинических иммунологов, директор Государственного научного центра Институт иммунологии Рахим Мусаевич Хаитов.

Что такое иммунитет?

Иммунитет в классическом понимании — это невосприимчивость к заразным заболеваниям. Но это определение устарело. Дело в том, что иммунная система организма выполняет широкий спектр функций. Если говорить в общем, она защищает от всего генетически чужеродного — от вирусов, бактерий, ­пересаженных органов, чужеродных клеток. Иммунитет защищает организм даже от его собственных клеток, если они изменились вследствие мутации. Наши клетки постоянно делятся, и при считывании такого колоссального объема генетической информации неизбежны ошибки. Некоторые ошибки приводят к тому, что на поверхности клетки возникают новые белки. Иммунная система мгновенно узнает и убивает такие клетки. Это важно, потому что часто они бывают родоначальниками раковых клеток. Помимо защиты от инфекций, от рака, иммунная система очищает организм от умирающих, старых и уже ненужных клеток.

Как функционирует иммунная система?

Иммунная система очень сложная. Я люблю сравнивать ее с нервной системой — их многое объединяет. Главный орган иммунной системы — вилочковая железа, или тимус, она находится за грудиной. Второй основной орган — костный мозг у млекопитающих и фабрициевая сумка, или бурса Фабрициуса, у птиц. Кроме того, иммунная система состоит из многих периферических образований: это лимфатические узлы, которые рассеяны по всему организму, селезенка, лимфоидные образования, расположенные по ходу всего пищеварительного тракта, в слизистых. То есть весь наш организм включает в себя участки иммунной системы.

Клетки иммунной системы подвижные, они постоянно мигрируют. Благодаря этой способности они могут выходить из органов: из тимуса выходят новообразовавшиеся Т-лимфоциты, из костного ­мозга — В-лимфоциты, они мигрируют в лимфатические узлы, в ­селезенку, в кишечник и т.д. Циркулируя, клетки общаются друг с другом. Это важно, потому что клеток на самом деле очень много: среди Т-лимфоцитов есть клетки-помощники — они включают иммунные реакции; регуляторы — они подав­ляют или усиливают иммунитет; киллеры — они убивают другие клетки, даже свои собственные. В-лимфоциты тоже подразделяются на разные классы: некоторые из них, например, вырабатывают антитела — специальные белки, которые нейтрализуют микробы, вирусы, бактерии. Есть клетки, которые узнают антигены, есть клетки, которые перерабатывают их. То есть это очень сложный процесс, в котором многие клетки взаимодействуют друг с другом.

Почему вы сравнили иммунную систему с нервной?

Клетки нервной системы распространены по всему организму — то же самое в иммунной системе. Нервные клетки взаимодействуют друг с другом посредством специальных молекул, медиаторов — то же самое тут. Удивительная способность нашей нервной системы — обучаться и запоминать. Только еще одна система на это способна — иммунная, и все. Попал в ваш организм, например, какой-то микроб, бактериальная или вирусная инфекция. Иммунная система ее узнает, обучается атаковать и уничтожает. Иммунная память часто сохраняется на долгие годы, на всю жизнь. Допустим, переболел человек какой-то инфекцией, скажем корью, и у него образовались клетки памяти, которые уходят в селезенку, в лимфатические узлы и спокойно живут там десятилетиями. И ­когда в его организм попадает тот же самый микроб, эти клетки мгновенно его узнают и начинают размножаться, поэтому вторичная реакция очень сильная и быстрая. На этом основан эффект вакцинации. Людей вакцинируют, чтобы иммунная система обучилась и была готова отразить неприятеля — инфекцию. Провакцинировали вас против гриппа, у вас образовался иммунитет, появились клетки памяти, и, если придет инфекция, вы либо не заболеете, либо легко переболеете. То же самое по отношению к другим — и бактериальным, и вирусным — инфекциям.

Люди по-разному относятся к вакцинации, а что на этот счет думает наука?

Большинство ученых-иммунологов считают, что прививаться необходимо. Несколько лет назад по телевизору была целая кампания против вакцинации. Люди перестали прививаться, и это привело к тому, что у нас снова появились болезни, которые были практически искоренены: дифтерия, полиомиелит. Я хочу вам напомнить, что всего один раздел медицины — вакцинация — спас больше жизней, чем вся медицина в целом. Раньше, когда не было вакцин, эпидемии уносили миллионы, сотни миллионов жизней. Сейчас таких эпидемий нет благодаря вакцинации. Многие инфекции взяты под контроль; на Земле больше нет оспы — она осталась только в некоторых лабораториях в пробирках. Если посмотреть национальный календарь прививок, то там сейчас 11—12 инфекций, и все они контролируются при помощи прививок. Ну и, конечно, вакцинация дает огромный экономический эффект. В США, где очень аккуратно ведут подсчет, одна лишь вакцинация от гриппа экономит миллиарды долларов ежегодно. Намного выгоднее и благоразумнее проводить профилактику болезни, чем лечить ее потом — с осложнениями, с неясным исходом.

Бытует мнение, что прививаемся мы от какого-то одного штамма гриппа, а какой будет активен — не известно.

Так было лет 10—20 назад, сегодня это никакого значения не имеет. Современные вакцины поливалентные, они содержат белки наиболее актуальных штаммов гриппа. Эпидемиологи предсказывают, какие штаммы надвигаются, и вакцинологи успевают сделать вакцину. Причем сегодня существуют новые технологии. Если раньше вирус выращивали в курином эмбрионе и вакцины получали из куриного яйца, что приводило к осложнениям, в частности к аллергии, то сейчас вирусный белок можно получать в культуре клеток — то есть это абсолютно чистый белок. Такая современная вакцина не дает осложнений. Раньше вакцина была, по сути, кашей из убитых микробов и содержала в себе 99% ненужных организму веществ, а сегодня вакцины содержат только те белки, которые необходимы для иммунитета.

Чтобы вызвать хороший иммунитет против какой-то инфекции, не нужно использовать всю бактерию или весь вирус целиком. Скажем, в вирусе гриппа десятки белков, но достаточно одного-двух — тех, которые находятся на поверхности вируса и отвечают за иммунитет, а остальные вводить не нужно. Это очень важно для борьбы, например, с раком. При помощи иммунологов разработаны препараты, соединяющие в себе лекарства и антитела против опухоли. Когда их вводят в организм, антитело, как якорь, тянет лекарство именно туда, куда нужно.

Получается, в борьбе с раком сделан существенный прорыв?

Да, конечно. Даже возникла новая область науки — онкоиммунология. Почему возникает рак? У человека с нормальной иммунной системой рака быть не должно: как только в организме появляется раковая клетка, иммунная система ее тут же узнает и убивает. Рак развивается, когда иммунитет не работает. Это бывает, если ребенок родился с врожденным иммунодефицитом, если человека облучили или подвергли длительной иммунодепрессивной терапии после трансплантации органов и тканей, или если у человека СПИД, который выбивает главные клетки иммунной системы — Т-лимфоциты. В этих случаях частота случаев заболевания раком возрастает в десятки, сотни, тысячи раз. Раковая опухоль, защищаясь от иммунной системы, подавляет ее. То есть получается, что иммунная система атакует опухоль, а опухоль — иммунную систему. И на этом фоне ее дополнительно подавляют лучевой или химиотерапией. Поэтому онкологи поняли, что нужно восстанавливать иммунную систему, и сейчас, как правило, делают комбинированное ­лечение: лучевую и химиотерапию проводят параллельно с использова­нием стимуляторов иммунитета.

И конечно, иммунологи играют важную роль в диагностике онкозаболеваний. Если у человека каждый год брать кровь и определять белок, который является маркером для какой-либо опухоли, то уже на очень ранней стадии можно узнать, есть у него рак или нет. И тогда успех лечения будет гарантирован. В медицине мало методов, которые определяли бы что- нибудь со столь высокой точностью.

Сегодня активно рекламируют иммуностимуляторы. В случае тяжелого заболевания они действительно необходимы. Но люди часто сами решают, что у них слабый иммунитет и начинают пить стимуляторы. Правильно ли они поступают?

Какие признаки ослабленной иммунной системы существуют? Самый страшный — возникновение опухолей. Другие признаки — длительные серьезные болезни, такие как воспаление легких, частые простуды: то бронхит, то насморк, то ангина. Частые — это чаще, чем 10 раз в год; 5—6 раз — это нормально. Если вы подозреваете, что ваш иммунитет не в порядке, надо его проверить. Врач-иммунолог определит, на каком уровне иммунной системы есть дефект, функции какой клетки страдают или каких клеток не хватает, и назначит препарат, который все восстановит. Принимать иммуностимуляторы без назначения врача не стоит. Если иммунная система нормальная, вмешиваться в ее работу, стимулировать ее нельзя, можно только навредить. Излишняя активация иммунных клеток может привести к нарушению работы всей системы и возникновению разных патологий, например аутоиммунных заболеваний. Это парадоксальные болезни: иммунная система, вместо того чтобы защищать организм от чужеродного, атакует собственные органы и клетки. Эти ­болезни с трудом поддаются или вообще не поддаются лечению. Кроме того, стимуляция иммунной системы может вызвать аллергии. А это настоящий бич: 30% населения России страдает аллергией, а в крупных урбанизированных центрах всего мира, таких как Москва или Лос-Анджелес, — 40%.

Откуда берется аллергия?

Сегодня известны все аллергены, все механизмы и этапы развития аллергического процесса. Почему у одного аллергия проявляется в виде бронхиальной астмы, у другого в виде дерматита, у третьего — конъюнктивита, у четвертого — ринита? Когда аллерген попадает в организм, образуются специальные антитела, которые садятся на особые клетки. Если аллерген попадает повторно, он соединяется с этими антителами, мембраны клеток разрушаются и выбрасывается гистамин. Это вызывает аллергию. Если он выбрасывается в легких, возникает бронхиальная астма, если в конъюнктиву — конъюнктивит, если в слизистую носа — ринит, если на коже — крапивница. Все это известно. Но почему у одного человека возникает аллергия, допустим, к пыльце березы, а у другого к домашней пыли, никто не знает. Я считаю, что все дело в генах — просто они еще не найдены. Как только мы найдем ген, который заведует аллергическими реакциями, можно будет разработать настоящее лечение против аллергии. Потому что все существующие сегодня лекарства лишь блокируют ее. Хотя один метод все-таки есть: аллерген вычищают, доводят до чистого белка и два-три месяца вводят больному.

И так три года. Излечение происходит в 70—80% случаев. Это своего рода вакцинация, но очень опасная, она может привести к смерти. Мы, кстати, разработали новые препараты, в которых химически связаны аллерген и иммуномодулятор. Когда их вводят, в организме вместо аллергических образуются обычные защитные антитела. И не надо три года делать по 45 инъекций — одного курса бывает достаточно. Все клинические испытания уже завершены, и, может быть, через год-два это лекарство появится в аптеках. Это будет настоящий метод лечения любой аллергии — эффективный и неопасный.

Наследуется ли аллергия?

Наследуется предрасположенность к аллергии. И это опять же говорит в пользу существования гена аллергии. Если папа болен аллергией, а мама нет, то примерно у 25—30% детей будет аллергия. Если больны оба родителя, то ребенок будет аллергиком в 80% случаев. Конечно, если он не встретится со своим аллергеном, никакой аллергии не будет.

Изменилась ли за последнее время иммунная система человека?

Функционально, структурно — нет. Но в последнее время появилось много антропогенных факторов, которые ее подавляют. Это выбросы вредных производств, выхлопы автомобилей, лекарства, антибиотики и т.д. Кроме того, человек сегодня встречается с огромным количеством новых ­веществ. Продукты тоже влияют на иммунную систему, они проходят через кишечный тракт, где очень много иммунной ткани. Появилось огромное количество аллергенов, которых не было в природе. В начале прошлого века аллергией болело 2% людей; сегодня, как я уже сказал, — 30—40%. Иммунная система узнает любой, даже искусственно синтезированный антиген и отвечает на него. И если раньше она хранила в памяти сотни антигенов, то сейчас — тысячи. Поэтому ее ­клетки стали другими. Так что какие-то изменения, конечно, происходят.

«Слабый иммунитет» — это ­научное понятие?

Наука говорит об иммунодефиците. Он может быть врожденным, когда ребенок появляется на свет с дефектами системы иммунитета. Раньше такие дети умирали в течение года. Сейчас — нет. Им вводят продукты иммунной системы, проводят заместительную терапию, и они живут. Другой вид иммунодефицита — генетический, когда у человека есть гены, обуславливающие слабую иммунную реакцию на конкретную инфекцию. Но и этот вид иммунодефицита можно обмануть: мы разработали вакцины нового поколения, которые даже у организмов со слабыми генами иммунного ответа вызывают хорошую реакцию. Бывает также приобретенный иммунодефицит — его провоцируют облучение, голодание, сильные травмы, ожоги, серьезные операции, инфекции, в том числе СПИД — болезнь, которую вызывает очень коварный ретровирус, прицельно выбивающий самые главные клетки иммунной системы человека. Сегодня о СПИДе многое известно, поэтому в ­большинстве стран — в США, в Западной Европе, в Уганде — инфекция пошла на убыль. О России, к сожалению, мы этого сказать не можем. Сегодня у нас около 600 тысяч зараженных — и это число постоянно растет.

Я слышала, что есть люди, ­невосприимчивые к СПИДу.

Есть. Известно много случаев, когда в парах один из партнеров заражен, а второй — нет. Скорее всего, это происходит по генетическим причинам, то есть существует генетический фактор устойчивости. Сейчас мы приближаемся к тому, чтобы узнать, какие гены за это отвечают. Когда это будет расшифровано, можно будет более эффективно подойти к лечению.

Насколько я знаю, вы разработали вакцину от СПИДа.

Мы разработали кандидатную вакцину — так она называется на стадии испытания. Такого термина раньше не существовало, потому что вакцины всегда очень быстро готовились. Скажем, новую вакцину против гриппа мы разработали за 10—12 лет. А вирус СПИДа очень быстро мутирует — в 1000 раз быстрее вируса гриппа, поэтому обычными способами вакцину не сделать. Но мы нашли фрагменты вируса, которые не меняются, вытащили гены, отвечающие за них, синтезировали химерный белок и соединили его с иммуностимулятором, который замещает функцию пораженных клеток и вызывает иммунный ответ, даже если этих клеток мало. Наша вакцина успешно прошла первую фазу клинических испытаний, и сейчас мы готовимся ко второй фазе — очень сложной, для которой нужны тысячи добровольцев и предприятие, готовое выпускать вакцину.

В народе говорят: все болезни — от слабого иммунитета. Это так?

Очень большое количество болезней, конечно, связано с иммунитетом: это опухоли, аллергии, инфекционные болезни, СПИД, гепатит С и даже сердечно-сосудистые заболевания. ­Недавно выяснилось, что многие болезни, считавшиеся неинфекционными, вызываются вирусами, которые живут в организме, не причиняя очевидного вреда, но в какой-то момент, когда иммунная система ослаблена, вдруг начинают атаковать сосуды, ­головной мозг, сердце. И это проявляется в болезнях этих органов: возникают атеросклероз, бляшки, инфаркты.

Правда ли, что с обычными инфекционными заболеваниями вроде гриппа организм может справиться сам?

Нормальная иммунная система вырабатывает антитела и сама нейтрализует большинство так называемых условно патогенных инфекций. Лекарства в таких ситуациях давать не обязательно. А вот если речь идет об опасных инфекциях вроде гриппа, дифтерии, кори и др., то организму, ­конечно, нужно помогать — иммунитет сам не справится.

Каким образом можно укреп­лять иммунную систему?

Как бы банально это ни звучало, надо вести здоровый образ жизни, ­избавиться от вредных привычек ­(алкоголь в больших количествах, наркотики подавляют иммунитет), правильно питаться. Очень важны белки: попадая в организм, они перевариваются, превращаются в аминокислоты, а это главный строительный материал для иммунной системы. Также организму необходимы витамины.

Наследует ли ребенок от матери иммунитет?

Иммунитет не наследуется. Когда ребенок рождается, в его крови циркулируют все те антитела, которые были у матери. (Если мать в процессе жизни болела чем-то инфекционным, в ее организме образуются антитела). Так что у новорожденного уже есть защита. Еще одну порцию антител он получает с молоком матери. Но это не иммунизация, не вакцинация. Антитела в его организме действуют недолго — пока мать кормит его грудью. Как только она отнимает его от груди — антитела выводятся из организма. Но у ребенка уже есть иммунная система. У новорож­денного она слабее, чем у взрослого, но постепенно она обучается, становится более зрелой.

Нужно ли, как сейчас принято, держать детей в стерильных условиях, ограждать их от всех контактов?

Ни в коем случае. В естественных условиях — в саду, на грядке, в траве — ребенку через рот попадают микробы, как правило, неопасные, и он таким образом вакцинируется. Держать ребенка в стерильных условиях вредно — у него не будет иммунитета. Это доказали опыты на мышах, которых содержали в стерильных камерах и кормили стерильной пищей. У них полностью атрофировалась иммунная система, и, оказавшись на воле, они погибали от безобидных инфекций, которые для животных с нормальной иммунной системой неопасны. Поэтому очевидно, что нормальный ребенок должен находиться в естественных условиях.

Любопытно, что в странах с плохой гигиеной, например в Африке, меньше аллергий. Врачи объясняют это антигенной конкуренцией. Когда иммунная система часто сталкивается с инфекциями, она много работает, защищается, и для аллергии просто не остается места. А когда мы слишком бережем ребенка, в его иммунной системе образуется много вакантных мест, которые рвутся в бой, чтобы начать реакцию на какой-нибудь антиген.

Люди привыкли бояться бактерий и все время ­придумывают новые способы борьбы с ними. Одни считают, что надо как можно чаще мыть руки, причем антибактериальным мылом, другие — что мыться нужно реже, чтобы не смыть с кожи защитный слой.

Слишком часто действительно мыться не нужно. Наша кожа — это не иммунитет, но тоже защита, первый барьер на пути инфекций. На коже есть разные защитные вещества, и вымывать их не надо. Но правила гигиены, конечно, обя­зательны. Самое грязное место на теле человека — руки, поэтому их надо мыть — перед едой, после посещения туалета, после общест­венного транспорта и т.д. Что касается мыла, то не нужно никаких новых сортов — обычное мыло прекрасно все смывает. Хирурги перед операцией моются обычным мылом и обычной водой и не применяют никаких специальных антибактериальных средств.

Все ли бактерии действительно страшны?

Есть бактерии условно патогенные — они не опасны для человека с нормальной иммунной системой, но вызывают болезни у людей со слабым иммунитетом. Есть патогенные бактерии, которые вызывают болезни, даже если иммунная система нормальная. А есть и полезные бактерии. Например, в кишечнике живет огромное количество бактерий, которые нам просто необходимы. Они участвуют в обмене веществ, благодаря им мы усваиваем витамины. У женщин в половых путях живут бактерии, которые поддерживают кислую среду и таким образом препятствуют проникновению патогенных бактерий. Очень много бактерий у нас во рту — и они тоже неопасные.

Иммунитет: защита и нападение

Воспаление представляет собой реакцию ткани на инфекцию или повреждение и имеет следующие симптомы:

  • покраснение вследствие усиления кровотока;
  • отек вследствие накопления жидкости и клеток в тканях;
  • боль вследствие повреждения ткани и раздражения нервных волокон;
  • повышение температуры — местное (вследствие усиления кровотока) и/или системное (повышение температуры тела).

В процесс воспаления включаются белки плазмы крови — комплемент и цитокины. Комплементом называется ряд белков плазмы, вступающих в серию каскадных химических реакций в ответ на инфекцию. Это своего рода многоступенчатая сигнальная система, которая маркирует чужеродные микроорганизмы и привлекает в очаг инфекции специальные клетки — «убийцы» патогенов.

В ответ на сигнал тревоги начинается контратака защитной системы организма — запускается клеточный иммунный ответ. В неспецифическом иммунном ответе принимают участие два типа клеток крови — фагоциты и NK-клетки (или натуральные киллеры).

Фагоциты представляют собой крупные лейкоциты, поглощающие и буквально переваривающие внутри себя микроорганизмы и другие чужеродные частицы. Этот процесс называется фагоцитозом. Фагоциты наиболее чувствительны к микроорганизмам, помеченным белком-комплементом или антителами (эти частицы — уже часть адаптивного или специфического иммунного ответа). Кроме клеток, которые атакуют нарушителя по тревоге, в кровотоке также циркулирует регулярный «патруль» или особый вид лейкоцитов — натуральные киллеры. Их мишенью являются злокачественные клетки и клетки, инфицированные вирусами. Врожденный иммунитет быстро активируется на ранних стадиях инфекции. Его механизмы защиты могут ограничивать распространение патогенов в организме, но возможности для устранения чужеродных частиц ограничены и остаются прежними при повторном заражении тем же патогеном. Поэтому для борьбы с инфекцией обычно требуется участие третьей линии защиты — адаптивной иммунной системы (приобретённый иммунитет).

Адаптивный (приобретенный) иммунитет развивается после первой встречи с чужеродным агентом. Основными его качествами являются специфичность и иммунологическая память.

У специфического иммунитета в ответ на попадание в организм «чужака» в запасе имеется целая стратегия, которой позавидовали бы многие полководцы. «Основные войска» специфического иммунитета — лимфоциты. Это — специализированные лейкоциты, находящиеся в лимфатической системе. Лимфоциты характеризуются очень длительным периодом жизни — от нескольких лет до десятилетий! Известны три типа лимфоцитов: B-клетки, Т-клетки и натуральные киллеры (о них мы уже рассказывали).

Для развития адаптивного иммунитета требуется специфическая мишень — антиген. Антиген представляет собой вещество (обычно крупную молекулу), которая активирует иммунный ответ. Один микроорганизм обычно имеет большое количество антигенов, например, поверхностные структуры,  такие как компоненты клеточной стенки, полисахариды капсулы, жгутики и т. д., или внеклеточные белки, такие как токсины или ферменты, вырабатываемые микроорганизмом.

Сначала происходит выработка В-клетками оружия против нарушителей — белка, который прореагирует с антигеном и сделает его безвредным. Эти белки носят название антител, называемых также иммуноглобулинами (Ig). Антитела очень специфичны и способны связываться только с антигеном той же структуры, что изначально стимулировал их образование. Когда антитело находит соответствующий ему антиген, они соединяются наподобие ключа, вставляемого в замочную скважину.

Затем приобретенный иммунитет начинает действовать сразу на два фронта: гуморальный иммунный ответ направлен на антигены, присутствующие в плазме крови, а клеточный иммунный ответ — на патогены, присутствующие внутри клеток.

В процессе гуморального иммунного ответа В-клетки, активированные специфическими антигенами, начинают усиленно делиться с образованием большого количества идентичных клеток-клонов, каждая из которых способна бороться с данным антигеном. Антитела B-клеток также привлекают фагоциты, уничтожающие и переваривающие антиген-мишень.

Клеточный иммунитет использует «специализированные силы» — T-хелперы и цитотоксические T-клетки, непосредственно атакующие и уничтожающие «войска противника» — инфицированные клетки.

После того, как война с инфекцией выиграна, В- и Т-клетки, активированные антигенами, переходят в состояние покоя и становятся лимфоцитами памяти, специфичными по отношению к данному антигену или патогену. При повторном заражении аналогичным или очень похожим (антигенно-аналогичным) микроорганизмом, они обеспечивают быстрый и мощный иммунный ответ. Высокие концентрации нужных антител достигаются уже через 1 — 2 дня после инфицирования.

Итак, приобретенный иммунитет характеризуется тремя основными особенностями:

  • Специфичность: каждое антитело или активированная Т-клетка реагирует только со специфичным антигеном, вызвавшим ее образование. При этом они не реагируют с другими антигенами и защищают организм только от заболеваний, характеризующихся присутствием данного антигена.
  • Память: после того, как в процессе адаптивного иммунного ответа произошло образование специфичного антитела или Т-клетки, производство антител или активация Т-клеток происходит быстрее и в больших количествах. Данная особенность является основой эффекта многих вакцин.
  • Толерантность к собственным тканям: механизмы адаптивного иммунного ответа в норме способны отличать собственные структуры организма от чужеродных.

Иммунная система и первичный иммунодефицит

Иммунная система состоит из множества различных типов клеток и белков. Каждый элемент выполняет определенную задачу, направленную на распознавание постороннего материала и / или реагирование на него.

Организация и развитие иммунной системы

Иммунная система — это прекрасное сотрудничество между клетками и белками, которые работают вместе, чтобы обеспечить защиту от инфекции. Эти клетки и белки не образуют единого органа, такого как сердце или печень.Вместо этого иммунная система рассредоточена по всему телу, чтобы обеспечить быстрый ответ на инфекцию (, рис. 1, ). Клетки проходят через кровоток или в специальные сосуды, называемые лимфатическими. Лимфатические узлы и селезенка обеспечивают структуры, которые способствуют межклеточной коммуникации.

Костный мозг и тимус представляют собой тренировочную площадку для двух клеток иммунной системы (B-клеток и T-клеток соответственно). Развитие всех клеток иммунной системы начинается в костном мозге с гемопоэтических (кроветворных) стволовых клеток ( Рисунок 2 ).Эта клетка называется «стволовой», потому что все другие специализированные клетки возникают из нее. Благодаря своей способности генерировать всю иммунную систему, эта клетка является наиболее важной при трансплантации костного мозга или гемопоэтических стволовых клеток. Он связан с эмбриональными стволовыми клетками, но представляет собой отдельный тип клеток. В большинстве случаев развитие одного типа клеток не зависит от других типов клеток.

Первичные иммунодефициты могут поражать только один компонент иммунной системы или несколько клеток и белков.Чтобы лучше понять иммунную недостаточность, обсуждаемую позже, в этом разделе будет описана организация и созревание иммунной системы.

Хотя все компоненты иммунной системы взаимодействуют друг с другом, обычно рассматриваются две широкие категории иммунных ответов: врожденная иммунная система и адаптивная иммунная система.

Врожденные иммунные ответы — это те реакции, которые зависят от клеток, которым не требуется дополнительная «тренировка» для выполнения своей работы. Эти клетки включают нейтрофилы, моноциты, естественные киллеры (NK) и набор белков, называемых белками комплемента.Врожденные реакции на инфекцию происходят быстро и надежно. Даже у младенцев есть отличные врожденные иммунные реакции.

Адаптивные иммунные ответы составляют вторую категорию. В этих ответах участвуют Т-клетки и В-клетки, два типа клеток, которые требуют «тренировки» или обучения, чтобы научиться не атаковать наши собственные клетки. Преимуществами адаптивных ответов являются их долговечная память и способность адаптироваться к новым микробам.

Центральным элементом обеих категорий иммунных ответов является способность отличать чужеродных захватчиков (то есть, что нужно атаковать) от наших собственных тканей, которые необходимо защищать.Из-за своей способности быстро реагировать врожденные реакции обычно первыми реагируют на «вторжение». Этот первоначальный ответ служит для предупреждения и запуска адаптивного ответа, для полной активации которого может потребоваться несколько дней.

В раннем детстве врожденные реакции наиболее заметны. У новорожденных есть антитела от матери, но они не вырабатывают собственных антител в течение нескольких недель.

Адаптивная иммунная система функционирует при рождении, но она не приобрела опыта, необходимого для оптимальной реакции памяти.Хотя это формирование памяти происходит на протяжении всей жизни, наиболее быстрый иммунологический опыт происходит в период между рождением и трехлетним возрастом. Каждое инфекционное воздействие приводит к тренировке клеток, так что реакция на повторное воздействие той же самой инфекции происходит быстрее и сильнее.

В течение первых нескольких лет жизни большинство детей заражаются самыми разными инфекциями и вырабатывают антитела, направленные против этих конкретных инфекций. Клетки, вырабатывающие антитело, «запоминают» инфекцию и обеспечивают длительный иммунитет к ней.Точно так же Т-клетки могут запоминать вирусы, с которыми столкнулся организм, и могут более энергично реагировать, когда снова сталкиваются с тем же вирусом. Такое быстрое созревание адаптивной иммунной системы в раннем детстве затрудняет тестирование маленьких детей, поскольку ожидания относительно того, что является нормальным, с возрастом меняются. В отличие от адаптивной иммунной системы, врожденная иммунная система в значительной степени не повреждена при рождении.

Основные органы иммунной системы

Нажмите, чтобы увеличить

А.Тимус: Тимус — это орган, расположенный в верхней части грудной клетки. Незрелые лимфоциты покидают костный мозг и попадают в тимус, где они «обучаются», чтобы стать зрелыми Т-лимфоцитами.

B. Печень: Печень — главный орган, ответственный за синтез белков системы комплемента. Кроме того, он содержит большое количество фагоцитарных клеток, которые поглощают бактерии в крови, когда она проходит через печень.

C. Костный мозг: Костный мозг — это место, где все клетки иммунной системы начинают свое развитие из примитивных стволовых клеток.

D. Миндалины: Миндалины представляют собой скопление лимфоцитов в горле.

E. Лимфатические узлы: Лимфатические узлы представляют собой скопления В-лимфоцитов и Т-лимфоцитов по всему телу. Клетки собираются в лимфатических узлах, чтобы общаться друг с другом.

F. Селезенка: Селезенка представляет собой совокупность Т-лимфоцитов, В-лимфоцитов и моноцитов. Он служит для фильтрации крови и предоставляет место для взаимодействия организмов и клеток иммунной системы.

G. Кровь: Кровь — это система кровообращения, которая переносит клетки и белки иммунной системы из одной части тела в другую.

Клетки иммунной системы

Нажмите, чтобы увеличить

A. Костный мозг: Участок в организме, где большая часть клеток иммунной системы вырабатывается в виде незрелых или стволовых клеток.

B. Стволовые клетки: Эти клетки обладают потенциалом дифференцироваться и созревать в различные клетки иммунной системы.

C. Тимус: Орган, расположенный в грудной клетке, который заставляет незрелые лимфоциты становиться зрелыми Т-лимфоцитами.

D. B-клетки: Эти лимфоциты возникают в костном мозге и дифференцируются в плазматические клетки, которые, в свою очередь, вырабатывают иммуноглобулины (антитела).

E. Цитотоксические Т-клетки: Эти лимфоциты созревают в тимусе и отвечают за уничтожение инфицированных клеток.

F. Хелперные Т-клетки: Эти специализированные лимфоциты «помогают» другим Т-клеткам и В-клеткам выполнять свои функции.

G. Клетки плазмы: Эти клетки развиваются из В-клеток и являются клетками, вырабатывающими иммуноглобулин для сыворотки и секретов.

H. Иммуноглобулины: Эти узкоспециализированные белковые молекулы, также известные как антитела, подходят для чужеродных антигенов, таких как полиомиелит, как замок и ключ. Их разнообразие настолько велико, что их можно производить так, чтобы они соответствовали всем возможным микроорганизмам в нашей окружающей среде.

I. Нейтрофилы (полиморфноядерные клетки PMN): Тип клеток, обнаруженных в кровотоке, которые быстро поглощают микроорганизмы и убивают их.

J. Моноциты: Тип фагоцитарных клеток, обнаруженных в кровотоке, которые развиваются в макрофаги при миграции в ткани.

K. Красные кровяные тельца: Клетки в кровотоке, которые переносят кислород из легких в ткани.

L. Тромбоциты: Мелкие клетки в кровотоке, которые важны для свертывания крови.

M. Дендритные клетки: Важные клетки в представлении антигена клеткам иммунной системы.

Компоненты иммунной системы

Каждый основной компонент иммунной системы будет рассмотрен отдельно ниже. Иммунная недостаточность может влиять на один или несколько компонентов. Проявления иммунодефицита могут быть единичным типом инфекции или более глобальной восприимчивостью к инфекции. Из-за множества взаимодействий между клетками и белками иммунной системы некоторые иммунодефицитные состояния могут быть связаны с очень ограниченным кругом инфекций.Для этих иммунодефицитов существуют другие элементы, которые «компенсируют слабину» и могут хотя бы частично компенсировать недостающую часть. В других случаях способность защищаться от инфекции очень слаба, и у человека могут быть серьезные проблемы с инфекциями.

Клетки иммунной системы можно разделить на лимфоциты (Т-клетки, В-клетки и NK-клетки), нейтрофилы и моноциты / макрофаги. Это все типы лейкоцитов. Основные белки иммунной системы — это преимущественно сигнальные белки (часто называемые цитокинами), антитела и белки комплемента.

Лимфоциты иммунной системы
В-клетки

B-клетки (иногда называемые B-лимфоцитами и часто называемые в лабораторных отчетах клетками CD19 или CD20) — это специализированные клетки иммунной системы, основная функция которых состоит в выработке антител (также называемых иммуноглобулинами или гамма-глобулинами). В-клетки развиваются в костном мозге из гемопоэтических стволовых клеток. В процессе созревания в костном мозге В-клетки обучаются или обучаются таким образом, чтобы они не вырабатывали антитела к здоровым тканям.В зрелом состоянии B-клетки могут быть обнаружены в костном мозге, лимфатических узлах, селезенке, некоторых областях кишечника и кровотоке.

Когда B-клетки сталкиваются с чужеродным материалом (антигенами), они реагируют созреванием в другой тип клеток, называемый плазматическими клетками. В-клетки также могут созревать в клетки памяти, что позволяет быстро отреагировать, если та же самая инфекция встречается снова. Плазматические клетки — это зрелые клетки, которые действительно производят антитела. Антитела, основной продукт плазматических клеток, попадают в кровоток, ткани, дыхательные и кишечные секреты и даже в слезы.Антитела — это узкоспециализированные белковые молекулы сыворотки.

Для каждого чужеродного антигена существуют молекулы антител, специально разработанные для этого антигена, такие как замок и ключ. Например, есть молекулы антител, которые физически соответствуют полиовирусу, другие — дифтерии, а третьи — вирусу кори. Разнообразие различных молекул антител очень велико, поэтому В-клетки обладают способностью вырабатывать их против практически всех микробов в нашей среде.Однако каждая плазматическая клетка производит только один вид антител.

Когда молекулы антител распознают микроорганизм как чужеродный, они физически прикрепляются к нему и запускают сложную цепочку событий с участием других компонентов иммунной системы, которые работают, чтобы в конечном итоге уничтожить микроб. Антитела различаются в зависимости от их специализированных функций в организме. Эти изменения определяются химической структурой антитела, которая, в свою очередь, определяет класс антитела (или иммуноглобулина).

Существует пять основных классов антител (IgG, IgA, IgM, IgD и IgE). IgG имеет четыре различных подкласса (IgG1, IgG2, IgG3, IgG4). IgA имеет два подкласса (IgA1 и IgA2).

Каждый класс иммуноглобулинов имеет различные химические характеристики, которые наделяют его определенными функциями (рис. 3). Например, антитела IgG образуются в больших количествах, остаются в кровотоке в течение нескольких недель и легко перемещаются из кровотока в ткани. Только IgG проникает через плаценту и передает часть иммунитета от матери новорожденному.

Антитела класса IgA вырабатываются возле слизистых оболочек и попадают в секреты, такие как слезы, желчь, слюна и слизь, где они защищают от инфекций в дыхательных путях и кишечнике. Некоторое количество IgA также появляется в кровотоке.

Антитела класса IgM — первые антитела, образующиеся в ответ на инфекцию. Они важны для защиты в первые дни заражения.

Антитела класса IgE вызывают аллергические реакции.

Антитела защищают организм от инфекции различными способами. Например, некоторые микроорганизмы, такие как вирусы, должны прикрепиться к клеткам организма, прежде чем они смогут вызвать инфекцию, но антитела, связанные с поверхностью вируса, могут препятствовать способности вируса прикрепляться к клетке-хозяину. Кроме того, антитела, прикрепленные к поверхности некоторых микроорганизмов, могут вызывать активацию группы белков, называемой системой комплемента, которая может напрямую убивать некоторые бактерии или вирусы.

Бактерии, покрытые антителами, также гораздо легче поглощаются нейтрофилами и уничтожаются, чем бактерии, не покрытые антителами. Все эти действия антител препятствуют успешному проникновению микроорганизмов в ткани организма и возникновению серьезных инфекций.

Длительный срок жизни плазматических клеток позволяет нам сохранять иммунитет к вирусам и бактериям, заразившим нас много лет назад. Например, как только люди будут полностью иммунизированы живыми вакцинными штаммами вируса кори, они почти никогда не заразятся им, потому что они сохраняют плазматические клетки и антитела в течение многих лет, и эти антитела предотвращают инфекцию.

Т-клетки

Т-клетки (иногда называемые Т-лимфоцитами и часто называемые в лабораторных отчетах как CD3-клетки) — это еще один тип иммунных клеток. Т-клетки напрямую атакуют клетки, инфицированные вирусами, а также действуют как регуляторы иммунной системы.

Т-клетки развиваются из гемопоэтических стволовых клеток в костном мозге, но завершают свое развитие в тимусе. Тимус — это специализированный орган иммунной системы грудной клетки. В тимусе незрелые лимфоциты развиваются в зрелые Т-клетки («Т» обозначает тимус), и Т-клетки, способные атаковать нормальные ткани, удаляются.Тимус необходим для этого процесса, и Т-клетки не могут развиваться, если у плода нет вилочковой железы. Зрелые Т-клетки покидают тимус и заселяют другие органы иммунной системы, такие как селезенка, лимфатические узлы, костный мозг и кровь.

Каждая Т-клетка реагирует со специфическим антигеном, точно так же, как каждая молекула антитела реагирует со специфическим антигеном. Фактически, на поверхности Т-клеток есть молекулы, похожие на антитела. Разнообразие различных Т-клеток настолько велико, что в организме есть Т-клетки, которые могут реагировать практически против любого антигена.

Т-клетки обладают разными способностями распознавать антиген и различаются по функциям. Существуют «киллерные» или цитотоксические Т-клетки (часто обозначаемые в лабораторных отчетах как Т-клетки CD8), хелперные Т-клетки (часто обозначаемые в лабораторных отчетах как Т-клетки CD4) и регуляторные Т-клетки. Каждый из них играет свою роль в иммунной системе.

Киллерные или цитотоксические Т-клетки фактически уничтожают инфицированные клетки. Т-киллеры защищают организм от определенных бактерий и вирусов, которые способны выживать и даже воспроизводиться в собственных клетках организма.Т-киллеры также реагируют на инородные ткани в организме, такие как пересаженная почка. Клетка-киллер должна мигрировать к месту заражения и напрямую связываться со своей мишенью, чтобы гарантировать ее разрушение.

Т-хелперы помогают В-клеткам вырабатывать антитела и помогают Т-клеткам-киллерам атаковать чужеродные вещества.

Регуляторные Т-клетки подавляют или выключают другие Т-лимфоциты. Без регулирующих клеток иммунная система продолжала бы работать даже после излечения инфекции.Без регуляторных Т-клеток организм может «чрезмерно отреагировать» на инфекцию. Регуляторные Т-клетки действуют как термостат лимфоцитарной системы, чтобы держать ее включенной ровно достаточно — не слишком много и не слишком мало.

Структура иммуноглобулина

Нажмите, чтобы увеличить

Каждый класс или тип иммуноглобулинов имеет общие свойства с другими. Все они имеют сайты связывания антигена, которые специфически сочетаются с чужеродным антигеном.

А.IgG: IgG является основным классом иммуноглобулинов в организме и обнаруживается в кровотоке, а также в тканях.

B. Секреторный IgA: Секреторный IgA состоит из двух молекул IgA, соединенных J-цепью и прикрепленных к секреторной части. Эти модификации позволяют секреторному IgA секретироваться в слизь, кишечные соки и слезы, где он защищает эти области от инфекции.

C. IgM: IgM состоит из пяти молекул иммуноглобулина, прикрепленных друг к другу.Он образуется на очень ранней стадии заражения и очень легко активирует комплемент.

NK Cells

Естественные клетки-киллеры (NK) названы так потому, что они легко убивают клетки, инфицированные вирусами. Их называют «естественными клетками-киллерами», поскольку они не нуждаются в том же образовании тимуса, которое требуется Т-клеткам. NK-клетки происходят из костного мозга и в относительно небольшом количестве присутствуют в кровотоке и тканях. Они важны для защиты от вирусов и, возможно, также для предотвращения рака.

NK-клеток убивают инфицированные вирусом клетки, вводя в них смертоносное зелье химикатов. Они особенно важны для защиты от вирусов герпеса. Это семейство вирусов включает традиционную форму герпеса (простой герпес), а также вирус Эпштейна-Барра (причина инфекционного мононуклеоза) и вирус ветряной оспы (причина ветряной оспы).

Нейтрофилы

Нейтрофилы или полиморфноядерные лейкоциты (полисы или PMN) являются наиболее многочисленными из всех типов белых кровяных телец, составляя около половины или более от общего числа.Их также называют гранулоцитами, и они появляются в лабораторных отчетах как часть общего анализа крови (CBC с дифференциалом). Они обнаруживаются в кровотоке и могут мигрировать в места заражения в течение нескольких минут. Эти клетки, как и другие клетки иммунной системы, развиваются из гемопоэтических стволовых клеток костного мозга.

Нейтрофилы увеличиваются в количестве в кровотоке во время инфекции и в значительной степени ответственны за повышенное количество лейкоцитов, наблюдаемое при некоторых инфекциях.Это клетки, которые покидают кровоток и накапливаются в тканях в течение первых нескольких часов инфекции и отвечают за образование «гноя». Их основная роль — заглатывать бактерии или грибки и убивать их. Их стратегия убийства основана на поглощении инфицированных организмов в специальных пакетах клеточной мембраны, которые затем сливаются с другими частями нейтрофила, содержащими токсичные химические вещества, убивающие микроорганизмы. Они не играют особой роли в защите от вирусов.

Моноциты

Моноциты тесно связаны с нейтрофилами и циркулируют в кровотоке.Они составляют 5-10 процентов лейкоцитов. Они также выстилают стенки кровеносных сосудов в таких органах, как печень и селезенка. Здесь они улавливают микроорганизмы в крови, когда микроорганизмы проходят мимо. Когда моноциты покидают кровоток и попадают в ткани, они меняют форму и размер и становятся макрофагами. Макрофаги необходимы для уничтожения грибов и класса бактерий, к которому принадлежит туберкулез (микобактерии). Подобно нейтрофилам, макрофаги поглощают микробы и доставляют токсичные химические вещества непосредственно инородному захватчику, чтобы убить его.

Макрофаги живут дольше нейтрофилов и особенно важны при медленно растущих или хронических инфекциях. На макрофаги могут влиять Т-клетки, и они часто взаимодействуют с Т-клетками, убивая микроорганизмы.

Цитокины

Цитокины — очень важный набор белков в организме. Эти небольшие белки служат гормонами для иммунной системы. Они производятся в ответ на угрозу и представляют собой коммуникационную сеть для иммунной системы. В некоторых случаях клетки иммунной системы общаются, напрямую касаясь друг друга, но часто клетки общаются, секретируя цитокины, которые затем могут воздействовать на другие клетки либо локально, либо на расстоянии.

Эта умная система позволяет быстро доставить очень точную информацию, чтобы предупредить тело о статусе угрозы. Цитокины не часто измеряются клинически, но могут отображаться в лабораторных документах как IL-2, IL-4, IL-6 и т. Д. Некоторые цитокины были названы до того, как была введена нумерация интерлейкинов (IL), и имеют разные названия.

Дополнение

Система комплемента состоит из 30 белков крови, которые действуют упорядоченным образом для защиты от инфекции.Большинство белков в системе комплемента вырабатываются в печени. Некоторые белки системы комплемента покрывают зародыши, чтобы облегчить их усвоение нейтрофилами. Другие компоненты комплемента посылают химические сигналы, чтобы привлечь нейтрофилы к участкам инфекции. Белки комплемента также могут собираться на поверхности микроорганизмов, образуя комплекс. Затем этот комплекс может проколоть клеточную стенку микроорганизма и разрушить ее.

Примеры того, как иммунная система борется с инфекциями
Бактерии

Наши тела покрыты бактериями, и наша окружающая среда содержит бактерии на большинстве поверхностей.Наша кожа и внутренние слизистые оболочки действуют как физические барьеры, помогающие предотвратить инфекцию. Когда кожа или слизистые оболочки повреждены из-за болезни, воспаления или травмы, бактерии могут попасть в организм. Инфекционные бактерии обычно покрываются комплементом и антителами, когда попадают в ткани, и это позволяет нейтрофилам легко распознавать бактерии как что-то чужеродное. Затем нейтрофилы поглощают бактерии и уничтожают их (рис. 4).

Когда антитела, комплемент и нейтрофилы функционируют нормально, этот процесс эффективно убивает бактерии.Однако, когда количество бактерий слишком велико или есть дефекты в продукции антител, комплемента и / или нейтрофилов, могут возникать рецидивирующие бактериальные инфекции.

Вирусов

Большинство из нас часто подвергаются воздействию вирусов. То, как наш организм защищается от вирусов, отличается от того, как мы боремся с бактериями. Вирусы могут выживать и размножаться только внутри наших клеток. Это позволяет им «прятаться» от нашей иммунной системы. Когда вирус заражает клетку, клетка выделяет цитокины, чтобы предупредить другие клетки об инфекции.Это «предупреждение» обычно предотвращает заражение других клеток. К сожалению, многие вирусы могут перехитрить эту стратегию защиты и продолжают распространять инфекцию.

Циркулирующие Т-клетки и NK-клетки предупреждаются о вирусном вторжении и мигрируют в то место, где они убивают определенные клетки, в которых содержится вирус. Это очень разрушительный механизм уничтожения вируса, потому что многие наши собственные клетки могут быть принесены в жертву в процессе. Тем не менее, это эффективный процесс искоренения вируса.

В то же время, когда Т-лимфоциты убивают вирус, они также инструктируют В-лимфоциты вырабатывать антитела. Когда мы подвергаемся воздействию того же вируса во второй раз, антитела помогают предотвратить инфекцию. Т-клетки памяти также продуцируются и быстро реагируют на вторую инфекцию, что также приводит к более легкому течению инфекции.

Нормальное антибактериальное действие

Щелкните, чтобы увеличить изображение

В большинстве случаев бактерии уничтожаются совместными усилиями фагоцитирующих клеток, антител и комплемента.

A. Нейтрофил (фагоцитарная клетка) взаимодействует с бактериями (микробом): Микроб покрыт специфическим антителом и комплементом. Затем фагоцитарная клетка начинает свою атаку на микроб, присоединяясь к молекулам антитела и комплемента.

B. Фагоцитоз микроба: После прикрепления к микробу фагоцитарная клетка начинает поглощать микроб, распространяясь вокруг микроба и поглощая его.

C. Уничтожение микроба: После проглатывания микроба пакеты с ферментами или химическими веществами сбрасываются в вакуоль, где они убивают микроб.

Иммунная система и первичные иммунодефицитные заболевания

Иммунная недостаточность классифицируется как первичная иммунная недостаточность или вторичная иммунная недостаточность. Первичный иммунный дефицит является «первичным», потому что иммунная система является основной причиной, и большинство из них являются генетическими дефектами, которые могут передаваться по наследству. Вторичные иммунодефицитные состояния называются так, потому что они вызваны другими состояниями.

Вторичный иммунный дефицит является обычным явлением и может возникать как часть другого заболевания или как следствие приема определенных лекарств.Наиболее распространенные вторичные иммунные недостаточности вызваны старением, недоеданием, приемом некоторых лекарств и некоторыми инфекциями, такими как ВИЧ.

Наиболее распространенными лекарствами, связанными с вторичным иммунодефицитом, являются химиотерапевтические препараты и препараты, подавляющие иммунитет, рак, отторжение трансплантированного органа или аутоиммунные заболевания. Другой вторичный иммунный дефицит включает потерю белка в кишечнике или почках. Когда белки теряются, теряются и антитела, что приводит к низким иммунным глобулинам или низким уровням антител.Эти состояния важно распознавать, потому что, если основная причина может быть устранена, функция иммунной системы может быть улучшена и / или восстановлена.

Независимо от первопричины может оказаться полезным распознавание вторичного иммунодефицита и оказание иммунологической поддержки. Предлагаемые типы поддержки сопоставимы с теми, которые используются при первичном иммунодефиците.

Заболевания, связанные с первичным иммунодефицитом, представляют собой группу заболеваний, вызываемых основными дефектами иммунной функции, которые являются внутренними или присущими клеткам и белкам иммунной системы.Существует более 400 первичных иммунодефицитов. Некоторые из них относительно распространены, а другие — довольно редко. Некоторые влияют на одну клетку или белок иммунной системы, а другие могут влиять на два или более компонентов иммунной системы.

Хотя болезни, связанные с первичным иммунодефицитом, могут во многом отличаться друг от друга, у них есть одна важная особенность. Все они являются результатом дефекта одного или нескольких элементов или функций нормальной иммунной системы, таких как Т-клетки, В-клетки, NK-клетки, нейтрофилы, моноциты, антитела, цитокины или система комплемента.Большинство из них являются наследственными заболеваниями и могут передаваться по наследству, например, Х-связанная агаммаглобулинемия (XLA) или тяжелый комбинированный иммунодефицит (SCID). Другие первичные иммунодефициты, такие как общий вариабельный иммунодефицит (CVID) и селективный дефицит IgA, не всегда наследуются четко или предсказуемо. Причина этих расстройств неизвестна, но считается, что взаимодействие генетических факторов и факторов окружающей среды может играть роль в их возникновении.

Поскольку наиболее важной функцией иммунной системы является защита от инфекции, люди с первичным иммунодефицитом имеют повышенную восприимчивость к инфекции.Это может включать слишком много инфекций, трудноизлечимых инфекций, необычно тяжелых инфекций или инфекций, вызванных необычными организмами. Инфекции могут располагаться в любом месте тела. Обычно поражаются носовые пазухи (синусит), бронхи (бронхит), легкие (пневмония) или кишечник (инфекционная диарея).

Другая функция иммунной системы — различать здоровую ткань («я») и чужеродный материал («чужой»). Примерами инородного материала могут быть микроорганизмы, пыльца или даже трансплантированная почка другого человека.При некоторых иммунодефицитных заболеваниях иммунная система неспособна отличить себя от чужого. В этих случаях, помимо повышенной восприимчивости к инфекции, люди с первичным иммунодефицитом также могут иметь аутоиммунные заболевания, при которых иммунная система атакует их собственные клетки или ткани, как если бы эти клетки были чужеродными или чужеродными.

Существует также несколько типов первичных иммунодефицитов, при которых способность реагировать на инфекцию в основном не нарушена, но способность регулировать этот ответ является ненормальной.Примерами этого являются аутоиммунный лимфопролиферативный синдром (ALPS) и IPEX (X-связанный синдром иммунодефицита, полиэндокринопатии и энтеропатии).

Заболевания, связанные с первичным иммунодефицитом, могут возникать у людей любого возраста. Первоначальные описания этих болезней были у детей. Однако по мере роста медицинского опыта у многих подростков и взрослых были диагностированы заболевания первичного иммунодефицита. Частично это связано с тем, что некоторые расстройства, такие как CVID и селективный дефицит IgA, могут иметь свои первоначальные клинические проявления во взрослой жизни.Эффективная терапия существует для нескольких основных иммунодефицитов, и многие люди с этими расстройствами могут жить относительно нормальной жизнью.

Заболевания, связанные с первичным иммунодефицитом, первоначально считались очень редкими. Однако недавние исследования показали, что как группа они более распространены, чем предполагалось изначально. Подсчитано, что 1 из 1 200–2 000 человек может иметь ту или иную форму первичного иммунодефицита.

Выдержка из Справочника IDF для пациентов и семей по первичным иммунодефицитным заболеваниям ПЯТОЕ ИЗДАНИЕ Авторское право 2013 г. Фондом иммунодефицита, США.Эта страница содержит общую медицинскую информацию, которую нельзя безопасно применить к любому отдельному случаю. Медицинские знания и практика могут быстро меняться. Таким образом, эту страницу не следует использовать как замену профессиональной медицинской консультации.

компонентов иммунной системы

Органы и ткани

Иммунная система состоит из множества частей, которые работают вместе, чтобы защитить тело от захватчиков. Основные части иммунной системы включают костный мозг и тимус.Костный мозг чрезвычайно важен для иммунной системы, потому что все клетки крови (включая Т- и В-лимфоциты) происходят из костного мозга. В-лимфоциты остаются в костном мозге для созревания, а Т-лимфоциты перемещаются в тимус.

Рисунок 1. Части иммунной системы
Источник: Институт качества и эффективности в здравоохранении (IQWiG). https://www.informedhealth.org/publishing-details.2011.en.html.

Тимус — это двухлопастная железа, расположенная над сердцем, за грудиной и между легкими.Тимус активен только в период полового созревания, затем он медленно сжимается и заменяется жиром и соединительной тканью. Тимус отвечает за выработку гормона тимозина, который, в свою очередь, помогает в производстве Т-клеток. Находясь в тимусе, Т-клетки размножаются, приобретают различные антигенные рецепторы и дифференцируются в Т-хелперы и цитотоксические Т-клетки. Различные белки (например, CD4, CD8) экспрессируются на поверхности Т-клеток. Вилочковая железа будет производить все Т-клетки, необходимые человеку к половому созреванию.

После созревания Т- и В-лимфоцитов в тимусе и костном мозге они перемещаются в лимфатические узлы и селезенку, где остаются до тех пор, пока не активируется иммунная система. Лимфатические узлы расположены по всему телу. Селезенка расположена в верхнем левом углу живота, за животом и под диафрагмой. Основная функция селезенки — фильтровать кровь. Здоровые эритроциты легко проходят через селезенку; однако поврежденные эритроциты расщепляются макрофагами (большие белые кровяные тельца, специализирующиеся на поглощении и переваривании клеточного мусора, патогенов и других чужеродных веществ в организме) в селезенке.Селезенка служит хранилищем тромбоцитов и лейкоцитов. Селезенка помогает иммунной системе, выявляя микроорганизмы, которые могут вызвать инфекцию.

Помимо лимфатических узлов и селезенки, лимфоидные ткани, связанные со слизистой оболочкой (MALT) и лимфоидные ткани, связанные с кишечником (GALT), играют жизненно важную роль в иммунной системе, хотя они считаются частью лимфатической системы. MALT — это лимфоидные ткани, обнаруженные в частях тела, где присутствует слизистая оболочка, таких как кишечник, глаза, нос, кожа и рот.Они содержат лимфоциты и макрофаги, которые защищают от патогенов, пытающихся проникнуть извне. GALT — это лимфоидные ткани, обнаруженные в слизистой и подслизистой оболочке желудочно-кишечного тракта, миндалинах, аппендиксе и пятнах Пейера в тонком кишечнике.

Иммунные клетки

Многие клетки работают вместе как часть врожденной (неспецифической) и адаптивной (специфической) иммунной системы. См. Модуль «Врожденный иммунный ответ против адаптивного» для получения дополнительной информации о врожденном и адаптивном иммунном ответе.Иммунные клетки иногда называют лейкоцитами или лейкоцитами.

Рисунок 2. клеток крови.

Гранулоциты — это тип лейкоцитов, в цитоплазме которых содержатся гранулы, содержащие ферменты. Нейтрофилы, базофилы и эозинофилы — это типы гранулоцитов. Нейтрофилы считаются первыми ответчиками врожденной иммунной системы. Нейтрофилы и макрофаги циркулируют в крови и находятся в тканях, наблюдая за потенциальными проблемами.Обе клетки могут «поедать» бактерии, а также общаться с другими иммунными клетками, если возникает проблема.

Клетки адаптивной иммунной системы (также называемые иммунными эффекторными клетками) выполняют иммунную функцию в ответ на стимул. Природные киллерные Т-лимфоциты и В-лимфоциты являются примерами эффекторных клеток. Например, активированные Т-лимфоциты уничтожают патогены посредством клеточно-опосредованного ответа. Активированные В-клетки секретируют антитела, которые способствуют возникновению иммунного ответа. Эффекторные клетки участвуют в разрушении рака.

Рисунок 3. Цитотоксические Т-клетки
Источник: Национальный институт рака \ Комплексный онкологический центр Дункана при Медицинском колледже Бейлора, Рита Елена Серда.

Неэффекторные клетки представляют собой антигенпрезентирующие клетки (APC), такие как дендритные клетки, регуляторные Т-клетки, ассоциированные с опухолью макрофаги и клетки-супрессоры миелоидного происхождения. Неэффекторные клетки не могут сами по себе вызвать гибель опухоли. Неэффекторные клетки препятствуют иммунному действию эффекторных клеток.При раке неэффекторные клетки позволяют опухолям расти.

Глоссарий компонентов иммунной системы

Компонент

Общее описание

Антиген

Любое вещество, способное вызывать иммунный ответ в организме.

Примеры включают бактерии, химические вещества, токсины, вирусы и пыльцу.

Клетки в организме, а также раковые клетки имеют антигены, которые могут вызывать иммунный ответ.

Опухолевые клетки происходят из нормальных клеток, но они производят чужеродные антигены и «неоантигены», которые происходят из мутировавшего собственного белка. Опухолевые антигены могут запускать адаптивный иммунитет.

Антигенпрезентирующая клетка (APC)

Клетки, такие как макрофаги, дендритные клетки и В-клетки, которые могут преобразовывать белковые антигены в пептиды.

Эти пептиды затем могут быть представлены (вместе с основным комплексом гистосовместимости) рецепторам Т-клеток на поверхности клетки.

Рисунок 4. Опухолевые антигены, представленные на антигенпредставляющей клетке
Источник: Асим Амин, доктор медицины, Институт рака Левина, Atrium Health

Антитело (Ab)

Особые белки, создаваемые лейкоцитами, которые могут убивать или ослаблять возбудители инфекций.Антитела перемещаются по кровотоку в поисках конкретных патогенов.

Организм может вырабатывать новые антитела в ответ на новые патогены или вакцины.

Также обозначается как иммуноглобулин (Ig).

Базофил

Базофил — это тип фагоцитарной иммунной клетки, имеющей гранулы. Воспаление заставляет базофилы выделять гистамин во время аллергических реакций.

B лимфоцит

Лимфоцит A B — это тип лейкоцитов, которые развиваются в костном мозге и вырабатывают антитела.

Ячейка памяти B

В-клеток, которые являются долгоживущими и помнят прошлое воздействие антигена.

Плазменная В-клетка

Активированные В-клетки, вырабатывающие антитела.В плазматической B-клетке продуцируется только один тип антител.

Цитокин

Тип белка, который воздействует на иммунную систему, усиливая или замедляя ее.

Цитокины могут встречаться в организме естественным образом или производиться в лаборатории.

Интерферон-альфа2b — это цитокин, производимый в лаборатории (с использованием технологии рекомбинантной ДНК) и используемый при лечении злокачественной меланомы.

Дендритная клетка

Дендритные клетки представляют собой антигенпрезентирующие клетки (APC). Антиген объединен с основным комплексом гистосовместимости и представлен на дендритной клетке активным Т- и В-лимфоцитам.

Эозинофил

Эозинофил — это тип иммунных клеток (лейкоцитов или белых кровяных телец).Они помогают бороться с инфекцией или вызывают воспаление.

Гранулоцит

Гранулоциты (включая эозинофилы, нейтрофилы и базофилы) представляют собой тип лейкоцитов, которые выделяют токсичные вещества, такие как противомикробные агенты, ферменты, оксиды азота и другие белки, во время атаки патогена.

Лейкоцитарные антигены человека

Человеческая версия главного комплекса гистосовместимости (MHC).

Комплекс MHC — это семейство из 200+ генов, разделенных на три класса: I, II, III.

Гены класса I производят белки, которые расположены на поверхности почти всех клеток.

Гены класса II расположены на поверхности иммунных клеток.

Гены класса III также связаны с иммунной системой и воспалением.

Ячейка естественного убийцы (NK)

Первичная эффекторная клетка врожденного иммунитета; первые респонденты иммунной системы.Они взаимодействуют с сигналами от других клеток (активирующими и тормозящими).

Т-лимфоцит (также называемый Т-лимфоцитом)

Тип лейкоцитов, участвующих в работе иммунной системы. Т-лимфоциты созревают в тимусе и дифференцируются в цитотоксические, клетки памяти, хелперные и регуляторные Т-клетки.

CAR Т-клеточная терапия использует Т-клетки, полученные из собственной крови пациента, для борьбы с раком.Т-клетки выращивают и модифицируют в лаборатории, чтобы включить специальные рецепторы (рецептор химерного антигена), которые могут распознавать и атаковать раковые клетки.

Цитотоксические Т-клетки

Цитотоксические Т-клетки являются первичными эффекторными клетками адаптивного иммунитета.

Активированные цитотоксические Т-клетки могут мигрировать через стенки кровеносных сосудов и нелимфоидные ткани.Они также могут преодолевать гематоэнцефалический барьер.

Цитотоксические Т-клетки активируются цитокинами. Они могут прикрепляться к раковым клеткам и убивать их.

Т-клетка памяти

Полученные из активированных цитотоксических Т-клеток, Т-клетки памяти являются долгоживущими и обладают антигенами. Одна Т-клетка памяти может продуцировать несколько цитотоксических Т-клеток.

После того, как активированные цитотоксические Т-клетки атакуют патоген, Т-клетки памяти остаются поблизости, чтобы смягчить любое рецидивирование.

Вспомогательная Т-клетка

Хелперные Т-клетки секретируют цитокины, которые помогают В-клеткам дифференцироваться в плазматические клетки. Эти клетки также помогают активировать цитотоксические Т-клетки и макрофаги.

Регуляторные Т-клетки

Регуляторные Т-клетки (или Treg) помогают подавить иммунную систему.

Лимфоцит

Лимфоциты — это иммунные клетки, обнаруженные в крови и лимфатической ткани. Т- и В-лимфоциты — два основных типа.

Макрофаг

Макрофаги — это большие белые кровяные тельца, которые находятся в тканях, которые специализируются на поглощении и переваривании клеточного мусора, патогенов и других посторонних веществ в организме.

Главный комплекс гистосовместимости (MHC)

MHC — это группа генов, которые кодируют белки в клетках иммунной системы.

У человека называется системой лейкоцитарного антигена человека (HLA).

Тучная клетка

Тучные клетки выделяют гистамин и помогают избавиться от аллергенов.

Моноцит

Крупные лейкоциты, находящиеся в кровотоке и специализирующиеся на поглощении и переваривании клеточного мусора, патогенов и других посторонних веществ в организме. Моноциты становятся макрофагами.

Клетки-супрессоры миелоидного происхождения

Когда незрелые миелоидные клетки не могут дифференцироваться в зрелые миелоидные клетки из-за таких состояний, как рак, происходит размножение миелоидных клеток-супрессоров, и ответ Т-клеток может быть подавлен.

Нейтрофил

Тип лейкоцитов, гранулоцитов и фагоцитов, помогающий бороться с инфекцией. Нейтрофилы убивают патогены, заглатывая их.

Фагоциты

Фагоциты поедают патогены, прикрепляясь к патогену и оборачиваясь вокруг него, чтобы поглотить его.Как только патоген попадает в ловушку внутри фагоцита, он оказывается в отсеке, называемом фагосомой. Затем фагосома сливается с лизосомой или гранулой с образованием фаголизосомы, в которой патоген уничтожается токсичными материалами, такими как антимикробные агенты, ферменты, оксиды азота или другие белки.

Спасибо за участие в этом модуле. Щелкните ниже, чтобы загрузить сертификат.

Скачать сертификат об участии

Объяснение иммунной системы — Better Health Channel

Иммунная система состоит из особых органов, клеток и химических веществ, которые борются с инфекциями (микробы).Основными частями иммунной системы являются: белые кровяные тельца, антитела, система комплемента, лимфатическая система, селезенка, тимус и костный мозг. Это те части вашей иммунной системы, которые активно борются с инфекцией.

Иммунная система и микробные инфекции

Иммунная система ведет учет каждого микроба, которого она когда-либо победила, в виде лейкоцитов (B- и T-лимфоцитов), известных как клетки памяти. Это означает, что он может распознать и быстро уничтожить микроб, если он снова попадет в организм, прежде чем он сможет размножиться и вызвать у вас тошноту.

С некоторыми инфекциями, такими как грипп и простуда, нужно бороться много раз, потому что эти заболевания могут вызывать очень много разных вирусов или штаммов одного и того же типа вируса. Простуда или грипп от одного вируса не дает вам иммунитета против других.

Части иммунной системы

Основными частями иммунной системы являются:

  • лейкоциты
  • антитела
  • система комплемента
  • лимфатическая система
  • селезенка
  • костный мозг
  • тимус.

Белые кровяные тельца

Белые кровяные клетки являются ключевыми игроками в вашей иммунной системе. Они вырабатываются костным мозгом и являются частью лимфатической системы.

Лейкоциты перемещаются через кровь и ткани по всему телу в поисках чужеродных захватчиков (микробов), таких как бактерии, вирусы, паразиты и грибки. Когда они их находят, они запускают иммунную атаку.

К лейкоцитам относятся лимфоциты (такие как В-клетки, Т-клетки и естественные клетки-киллеры) и многие другие типы иммунных клеток.

Антитела

Антитела помогают организму бороться с микробами или токсинами (ядами), которые они вырабатывают. Они делают это, распознавая вещества, называемые антигенами, на поверхности микроба или в производимых ими химических веществах, которые маркируют микроб или токсин как чужеродные. Затем антитела маркируют эти антигены для разрушения. В этой атаке задействовано множество клеток, белков и химических веществ.

Система комплемента

Система комплемента состоит из белков, действие которых дополняет работу, выполняемую антителами.

Лимфатическая система

Лимфатическая система представляет собой сеть тонких трубок по всему телу. Основные роли лимфатической системы:

  • управлять уровнями жидкости в организме
  • реагировать на бактерии
  • иметь дело с раковыми клетками
  • иметь дело с клеточными продуктами, которые в противном случае могли бы вызвать болезнь или расстройства
  • поглощать некоторые из жиры в нашем рационе из кишечника.

    борьба с лейкоцитами
  • лейкоцитами (лимфоцитами).

Селезенка

Селезенка — это орган, фильтрующий кровь, который удаляет микробы и разрушает старые или поврежденные эритроциты. Он также создает компоненты иммунной системы, борющиеся с болезнями (включая антитела и лимфоциты).

Костный мозг

Костный мозг — это губчатая ткань, находящаяся внутри ваших костей. Он производит красные кровяные тельца, необходимые нашему телу для переноса кислорода, белые кровяные тельца, которые мы используем для борьбы с инфекцией, и тромбоциты, необходимые для свертывания крови.

Тимус

Тимус фильтрует и контролирует содержание крови. Он производит лейкоциты, называемые Т-лимфоцитами.

Другие средства защиты организма от микробов

Помимо иммунной системы, у организма есть несколько других способов защиты от микробов, в том числе:

  • кожа — водостойкий барьер, выделяющий масло с бактерицидными свойствами
  • легкие — слизистая в легких (мокрота) улавливает инородные частицы, а маленькие волоски (реснички) поднимают слизистую вверх, чтобы ее можно было кашлять
  • пищеварительный тракт — слизистая оболочка содержит антитела, а кислота в желудок может убить большинство микробов
  • другие средства защиты — жидкости организма, такие как кожный жир, слюна и слезы, содержат антибактериальные ферменты, которые помогают снизить риск заражения.Также помогает постоянное промывание мочевыводящих путей и кишечника.

Лихорадка — это реакция иммунной системы

Повышение температуры тела или лихорадка может произойти при некоторых инфекциях. На самом деле это реакция иммунной системы. Повышение температуры может убить некоторые микробы. Лихорадка также запускает процесс восстановления организма.

Общие нарушения иммунной системы

Люди часто имеют чрезмерную или недостаточную активность иммунной системы. Гиперактивность иммунной системы может принимать различные формы, в том числе:

  • аллергические заболевания — где иммунная система создает чрезмерно сильная реакция на аллергены.Аллергические заболевания очень распространены. К ним относятся аллергия на продукты питания, лекарства или жалящие насекомые, анафилаксия (опасная для жизни аллергия), сенная лихорадка (аллергический ринит), заболевание носовых пазух, астма, крапивница (крапивница), дерматит и экзема
  • аутоиммунные заболевания — где иммунная система устанавливает ответ против нормальных компонентов тела. Аутоиммунные заболевания варьируются от обычных до редких. К ним относятся рассеянный склероз, аутоиммунное заболевание щитовидной железы, диабет 1 типа, системная красная волчанка, ревматоидный артрит и системный васкулит.

Недостаточная активность иммунной системы, также называемая иммунодефицитом , может:

  • унаследоваться — примеры этих состояний включают первичные иммунодефицитные заболевания, такие как общий вариабельный иммунодефицит (CVID), тяжелый комбинированный иммунодефицит, связанный с х-хромосомой (ТКИН) и дефицит комплемента
  • возникают в результате лечения — это может происходить из-за лекарств, таких как кортикостероиды, или химиотерапии
  • быть вызвано другим заболеванием — таким как ВИЧ / СПИД или определенные типы рака.

Недостаточно активная иммунная система не работает должным образом и делает людей уязвимыми для инфекций. В тяжелых случаях это может быть опасно для жизни.

Людям, перенесшим трансплантацию органов, необходимо иммуносупрессивное лечение, чтобы организм не атаковал пересаженный орган.

Иммуноглобулинотерапия

Иммуноглобулины (широко известные как антитела) используются для лечения людей, которые не могут вырабатывать достаточно собственных средств или чьи антитела не работают должным образом.Это лечение известно как иммуноглобулинотерапия.

До недавнего времени иммуноглобулинотерапия в Австралии в основном заключалась в доставке иммуноглобулинов через капельницу в вену, известную как терапия внутривенным иммуноглобулином (IVIg). Теперь подкожный иммуноглобулин (SCIg) может быть доставлен в жировую ткань под кожей, что может принести пользу некоторым пациентам. Это известно как подкожная инфузия или терапия SCIg.

Подкожный иммуноглобулин аналогичен внутривенному иммуноглобулину.Он производится из плазмы — жидкой части крови, содержащей важные белки, такие как антитела.

Загрузите информационный бюллетень SCIg, чтобы узнать больше об этом типе лечения.

Многие службы здравоохранения теперь предлагают терапию SCIg подходящим пациентам с определенными иммунными состояниями. Если вы заинтересованы, обсудите ваши конкретные требования со своим лечащим специалистом.

Иммунизация

Иммунизация работает путем копирования естественного иммунного ответа организма.В организм вводится вакцина (небольшое количество специально обработанного вируса, бактерии или токсина). Затем организм вырабатывает к нему антитела. Если вакцинированный человек подвергнется действию вируса, бактерии или токсина, он не заболеет, потому что его организм распознает это и знает, как успешно атаковать. Существуют прививки от многих болезней, включая корь и столбняк. Выбор необходимых прививок зависит от вашего здоровья, возраста, образа жизни и рода занятий. Вместе эти факторы называются HALO, что определяется как:

  • здоровье — некоторые состояния или факторы здоровья могут сделать вас более уязвимыми к болезням, которые можно предотвратить с помощью вакцин.Например, преждевременные роды, астма, диабет, заболевания сердца, легких, селезенки или почек, синдром Дауна и ВИЧ будут означать, что вам могут быть полезны дополнительные или более частые прививки
  • возраст — в разном возрасте вам нужна защита от разных вакцин. предотвратимые болезни. Национальная программа иммунизации Австралии устанавливает рекомендуемые прививки для младенцев, детей, пожилых людей и других людей из группы риска, таких как аборигены и жители островов Торресова пролива. Большинство рекомендуемых вакцин доступны для этих групп бесплатно.
  • Образ жизни — выбор образа жизни может повлиять на ваши потребности в иммунизации.Поездки за границу в определенные места, планирование семьи, сексуальную активность, курение и занятия контактными видами спорта, которые могут подвергнуть вас прямому воздействию чужой крови, будут означать, что вам могут быть полезны дополнительные или более частые прививки. Вам нужны дополнительные прививки или их нужно делать чаще, если вы работаете по профессии, которая подвергает вас болезням, предупреждаемым с помощью вакцин, или заставляет вас контактировать с людьми, которые более восприимчивы к проблемам, связанным с болезнями, предотвращаемыми с помощью вакцин (например, младенцы или молодые люди). дети, беременные женщины, пожилые люди и люди с хроническими или острыми заболеваниями).Например, если вы работаете в учреждении по уходу за престарелыми, в учреждении по уходу за детьми, в сфере здравоохранения, службы экстренной помощи или в сфере ремонта и обслуживания канализации, обсудите свои потребности в иммунизации со своим врачом. Некоторые работодатели помогают оплачивать соответствующие прививки своим сотрудникам.

Чтобы узнать больше, просмотрите график HALO.

Куда обратиться за помощью

Иммунная система (для родителей) — Nemours Kidshealth

Что такое иммунная система?

Иммунная система — это защита организма от инфекций.Иммунная система (ih-MYOON) атакует микробы и помогает нам оставаться здоровыми.

Какие части иммунной системы?

Многие клетки и органы работают вместе, чтобы защитить тело. Лейкоциты, также называемые лейкоцитами (LOO-kuh-sytes), играют важную роль в иммунной системе.

Некоторые типы белых кровяных телец, называемые фагоцитами (FAH-guh-sytes), поглощают вторгшиеся организмы. Другие, называемые лимфоцитами и (LIM-fuh-sytes), помогают организму запоминать захватчиков и уничтожать их.

Одним из типов фагоцитов является нейтрофил (NOO-truh-fil), который борется с бактериями. Если у кого-то может быть бактериальная инфекция, врачи могут назначить анализ крови, чтобы узнать, вызвало ли оно много нейтрофилов в организме. Другие типы фагоцитов делают свою работу, чтобы гарантировать реакцию организма на захватчиков.

Двумя типами лимфоцитов являются B-лимфоциты и T-лимфоциты . Лимфоциты берут начало в костном мозге и либо остаются там и созревают в В-клетки, либо переходят в вилочковую железу для созревания в Т-клетки.В-лимфоциты подобны военной разведывательной системе организма — они находят свои цели и посылают средства защиты, чтобы заблокировать их. Т-клетки похожи на солдат — они уничтожают захватчиков, которых обнаруживает система разведки.

Как работает иммунная система?

Когда организм улавливает чужеродные вещества (называемые антигенами), иммунная система распознает антигены и избавляется от них.

B-лимфоцитов запускаются, чтобы вырабатывать антител (также называемых иммуноглобулинами ).Эти белки фиксируются на определенных антигенах. После того, как они вырабатываются, антитела обычно остаются в нашем организме на тот случай, если нам снова придется бороться с тем же микробом. Вот почему тот, кто заболевает какой-либо болезнью, например ветряной оспой, обычно не заболевает ею снова.

Таким же образом иммунизация (вакцина) предотвращает некоторые заболевания. Иммунизация вводит в организм антиген таким образом, чтобы никто не заболел. Но это позволяет организму вырабатывать антитела, которые защитят человека от будущих атак со стороны микробов.

Хотя антитела могут распознавать антиген и фиксироваться на нем, они не могут уничтожить его без посторонней помощи. Это работа Т-клеток . Они разрушают антигены, помеченные антителами или инфицированными или каким-либо образом измененными клетками. (Некоторые Т-клетки на самом деле называются «клетками-киллерами».) Т-клетки также помогают сигнализировать другим клеткам (например, фагоцитам), чтобы они выполняли свою работу.

Антитела также могут:

  • нейтрализует токсины (ядовитые или повреждающие вещества), вырабатываемые различными организмами
  • активирует группу белков под названием комплемент , которые являются частью иммунной системы.Комплемент помогает убивать бактерии, вирусы или инфицированные клетки.

Эти специализированные клетки и части иммунной системы обеспечивают защиту организма от болезней. Эта защита называется иммунитетом.

У людей есть три типа иммунитета — врожденный, адаптивный и пассивный:

  • Врожденный иммунитет: Каждый человек рождается с врожденным (или естественным) иммунитетом, типом общей защиты. Например, кожа действует как барьер, препятствующий проникновению микробов в организм.И иммунная система распознает, когда определенные захватчики являются чужими и могут быть опасными.
  • Адаптивный иммунитет: Адаптивный (или активный) иммунитет развивается на протяжении всей нашей жизни. У нас развивается адаптивный иммунитет, когда мы подвергаемся болезням или когда мы иммунизируемся против них вакцинами.
  • Пассивный иммунитет: Пассивный иммунитет «заимствован» из другого источника и длится непродолжительное время. Например, антитела в материнском грудном молоке дают ребенку временный иммунитет к заболеваниям, которым подверглась мать.

Иммунной системе нужно время, чтобы развиться, и ей нужны вакцины. Своевременно получая все вакцины, рекомендованные вашему ребенку, вы можете помочь сохранить его здоровье, насколько это возможно.

иммунных клеток | NIH: Национальный институт аллергии и инфекционных заболеваний

Гранулоциты включают базофилы, эозинофилы и нейтрофилы. Базофилы и эозинофилы важны для защиты хозяина от паразитов.Они также участвуют в аллергических реакциях. Нейтрофилы, самая многочисленная клетка врожденного иммунитета, патрулируют проблемы, циркулируя в кровотоке. Они могут фагоцитозировать или поглощать бактерии, разлагая их внутри специальных отсеков, называемых везикулами.

Тучные клетки также важны для защиты от паразитов. Тучные клетки обнаруживаются в тканях и могут опосредовать аллергические реакции, выделяя воспалительные химические вещества, такие как гистамин.

Моноциты , которые развиваются в макрофагов , также патрулируют и реагируют на проблемы.Они находятся в кровотоке и тканях. Макрофаги, что по-гречески означает «большой поедатель», названы в честь их способности поглощать и разлагать бактерии. После активации моноциты и макрофаги координируют иммунный ответ, уведомляя другие иммунные клетки о проблеме. Макрофаги также выполняют важные неиммунные функции, такие как переработка мертвых клеток, таких как эритроциты, и удаление клеточного мусора. Эти «хозяйственные» функции выполняются без активации иммунного ответа.

Нейтрофилы (красный цвет) накапливаются в течение нескольких минут в местах локального повреждения тканей (в центре).Затем они общаются друг с другом с помощью липидов и других секретируемых медиаторов, образуя клеточные «рои». Их скоординированное движение и обмен сигналами затем инструктируют другие клетки врожденного иммунитета, называемые макрофагами и моноцитами (выделены зеленым цветом), окружать кластер нейтрофилов и образовывать плотную герметизацию раны. Это 24-секундное видео представляет собой двухчасовую запись.

Дендритные клетки (DC) являются важными антигенпрезентирующими клетками (APC), и они также могут развиваться из моноцитов.Антигены — это молекулы патогенов, клеток-хозяев и аллергенов, которые могут распознаваться адаптивными иммунными клетками. APC, подобные DC, отвечают за преобразование больших молекул в «читаемые» фрагменты (антигены), распознаваемые адаптивными B- или T-клетками. Однако одни антигены не могут активировать Т-клетки. Они должны быть представлены с соответствующим основным комплексом гистосовместимости (MHC), экспрессируемым на APC. MHC обеспечивает контрольную точку и помогает иммунным клеткам различать клетки-хозяева и чужеродные клетки.

Узнайте больше о MHC в разделе «Коммуникация и иммунная толерантность».

Клетки Natural killer (NK) обладают свойствами как врожденного, так и адаптивного иммунитета. Они важны для распознавания и уничтожения инфицированных вирусом клеток или опухолевых клеток. Они содержат внутриклеточные компартменты, называемые гранулами, которые заполнены белками, которые могут образовывать дыры в клетке-мишени, а также вызывать апоптоз, процесс запрограммированной гибели клеток. Важно различать апоптоз и другие формы гибели клеток, такие как некроз. Апоптоз, в отличие от некроза, не дает сигналов об опасности, которые могут привести к усилению иммунной активации и воспаления.Посредством апоптоза иммунные клетки могут незаметно удалять инфицированные клетки и ограничивать повреждение посторонних лиц. Недавно исследователи показали на моделях мышей, что NK-клетки, как и адаптивные клетки, могут сохраняться как клетки памяти и реагировать на последующие инфекции одним и тем же патогеном.

Адаптивные клетки

В-клетки выполняют две основные функции: они представляют антигены Т-клеткам и, что более важно, вырабатывают антитела для нейтрализации инфекционных микробов. Антитела покрывают поверхность патогена и выполняют три основные функции: нейтрализацию, опсонизацию и активацию комплемента.

Нейтрализация происходит, когда патоген, покрытый антителами, не может связываться и инфицировать клетки-хозяева. При опсонизации связанный с антителами патоген служит красным флажком, предупреждая иммунные клетки, такие как нейтрофилы и макрофаги, о поглощении и переваривании патогена. Комплемент — это процесс прямого уничтожения или лизиса бактерий.

Подробнее о дополнении читайте в разделе «Связь».

Антитела экспрессируются двумя способами. Рецептор B-клетки (BCR), который находится на поверхности B-клетки, на самом деле является антителом.В-клетки также секретируют антитела, которые распространяются и связываются с патогенами. Эта двойная экспрессия важна, потому что исходная проблема, например бактерия, распознается уникальным BCR и активирует B-клетку. Активированная В-клетка отвечает, секретируя антитела, в основном BCR, но в растворимой форме. Это гарантирует, что реакция будет специфичной против бактерии, запустившей весь процесс.

Все антитела уникальны, но они подпадают под общие категории: IgM, IgD, IgG, IgA и IgE.(Ig — сокращение от «иммуноглобулин», что является другим словом для обозначения антител.) Хотя они выполняют перекрывающиеся роли, IgM обычно важен для активации комплемента; IgD участвует в активации базофилов; IgG важен для нейтрализации, опсонизации и активации комплемента; IgA необходим для нейтрализации в желудочно-кишечном тракте; и IgE необходим для активации тучных клеток при паразитарных и аллергических реакциях.

Т-клетки выполняют различные роли и классифицируются по подмножествам.Т-клетки делятся на две широкие категории: CD8 + Т-клетки или CD4 + Т-клетки, в зависимости от того, какой белок присутствует на поверхности клетки. Т-клетки выполняют множество функций, включая уничтожение инфицированных клеток и активацию или рекрутирование других иммунных клеток.

CD8 + Т-клетки также называются цитотоксическими Т-клетками или цитотоксическими лимфоцитами (CTL). Они имеют решающее значение для распознавания и удаления инфицированных вирусом клеток и раковых клеток. CTL имеют специализированные компартменты или гранулы, содержащие цитотоксины, вызывающие апоптоз, т.е.е., запрограммированная гибель клеток. Из-за его эффективности высвобождение гранул строго регулируется иммунной системой.

Четыре основных подмножества CD4 + Т-клеток — это Th2, Th3, Th27 и Treg, где «TH» относится к «Т-хелперам». Клетки Th2 имеют решающее значение для координации иммунных ответов против внутриклеточных микробов, особенно бактерий. Они производят и выделяют молекулы, которые предупреждают и активируют другие иммунные клетки, такие как макрофаги, питающиеся бактериями. Клетки Th3 важны для координации иммунных ответов против внеклеточных патогенов, таких как гельминты (паразитические черви), путем предупреждения В-клеток, гранулоцитов и тучных клеток.Клетки Th27 названы в честь их способности продуцировать интерлейкин 17 (IL-17), сигнальную молекулу, которая активирует иммунные и неиммунные клетки. Клетки Th27 важны для набора нейтрофилов.

Регуляторные Т-клетки (Tregs), как следует из названия, контролируют и подавляют активность других Т-клеток. Они предотвращают неблагоприятную активацию иммунной системы и поддерживают толерантность или предотвращают иммунные реакции против собственных клеток и антигенов организма.

Подробнее о толерантности в разделе «Иммунная толерантность».

Связь

Иммунные клетки обмениваются данными разными способами, либо посредством межклеточного контакта, либо через секретируемые сигнальные молекулы. Рецепторы и лиганды имеют фундаментальное значение для клеточной коммуникации. Рецепторы — это белковые структуры, которые могут экспрессироваться на поверхности клетки или во внутриклеточных компартментах. Молекулы, активирующие рецепторы, называются лигандами, которые могут быть свободно плавающими или связанными с мембраной.

Взаимодействие лиганд-рецептор приводит к серии событий внутри клетки с участием сетей внутриклеточных молекул, которые передают сообщение.Изменяя экспрессию и плотность различных рецепторов и лигандов, иммунные клетки могут отправлять конкретные инструкции, адаптированные к конкретной ситуации.

Цитокины — это небольшие белки с разнообразными функциями. В иммунитете существует несколько категорий цитокинов, важных для роста, активации и функционирования иммунных клеток.

  • Колониестимулирующие факторы необходимы для развития и дифференцировки клеток.
  • Интерфероны необходимы для активации иммунных клеток.Интерфероны типа I опосредуют противовирусные иммунные ответы, а интерферон типа II важен для антибактериальных реакций.
  • Интерлейкины, которые входят в более чем 30 разновидностей, предоставляют контекстно-зависимые инструкции с активирующими или ингибирующими ответами.
  • Хемокины производятся в определенных частях тела или в месте инфекции для привлечения иммунных клеток. Различные хемокины будут привлекать разные иммунные клетки к нужному участку.
  • Семейство цитокинов фактора некроза опухоли (TNF) стимулирует пролиферацию и активацию иммунных клеток.Они имеют решающее значение для активации воспалительных реакций, и поэтому блокаторы TNF используются для лечения различных заболеваний, включая некоторые аутоиммунные заболевания.

Толл-подобные рецепторы (TLR) экспрессируются на клетках врожденного иммунитета, таких как макрофаги и дендритные клетки. Они расположены на поверхности клетки или во внутриклеточных компартментах, потому что микробы могут быть найдены в организме или внутри инфицированных клеток. TLR распознают общие микробные паттерны, и они необходимы для активации врожденных иммунных клеток и воспалительных реакций.

В-клеточных рецепторов (BCR) и Т-клеточных рецепторов (TCR) экспрессируются на адаптивных иммунных клетках. Оба они обнаруживаются на поверхности клетки, но BCR также секретируются в виде антител для нейтрализации патогенов. Гены BCR и TCR случайным образом перестраиваются на определенных стадиях созревания клеток, что приводит к появлению уникальных рецепторов, которые потенциально могут распознавать что угодно. Случайная генерация рецепторов позволяет иммунной системе реагировать на непредвиденные проблемы. Они также объясняют, почему В- или Т-клетки памяти высокоспецифичны и при повторной встрече со своим специфическим патогеном могут немедленно вызвать нейтрализующий иммунный ответ.

Главный комплекс гистосовместимости (MHC) или человеческий лейкоцитарный антиген (HLA), белки выполняют две основные функции.

Белки

MHC действуют как носители для представления антигенов на поверхности клеток. Белки MHC класса I необходимы для презентации вирусных антигенов и экспрессируются почти всеми типами клеток, кроме красных кровяных телец. Любая клетка, инфицированная вирусом, может сигнализировать о проблеме через белки MHC класса I. В ответ CD8 + Т-клетки (также называемые CTL) распознают и убивают инфицированные клетки.Белки МНС класса II обычно экспрессируются только антигенпрезентирующими клетками, такими как дендритные клетки и макрофаги. Белки MHC класса II важны для презентации антигенов CD4 + Т-клеткам. Антигены MHC класса II разнообразны и включают молекулы, происходящие как от патогенов, так и от хозяина.

Белки

MHC также сигнализируют о том, является ли клетка клеткой-хозяином или чужеродной клеткой. Они очень разнообразны, и у каждого человека есть уникальный набор белков MHC, унаследованных от его или ее родителей. Таким образом, у членов семейства есть сходство в белках MHC.Иммунные клетки используют MHC, чтобы определить, является ли клетка дружественной. При трансплантации органов белки MHC или HLA доноров и реципиентов сопоставляются, чтобы снизить риск отторжения трансплантата, которое происходит, когда иммунная система реципиента атакует донорскую ткань или орган. При трансплантации стволовых клеток или костного мозга неправильное сопоставление MHC или HLA может привести к реакции «трансплантат против хозяина», которая возникает, когда донорские клетки атакуют организм реципиента.

Комплемент относится к уникальному процессу, который удаляет патогены или умирающие клетки, а также активирует иммунные клетки.Комплемент состоит из ряда белков, обнаруженных в крови, которые образуют комплекс, атакующий мембрану. Белки комплемента активируются ферментами только при возникновении проблемы, например инфекции. Активированные белки комплемента прилипают к патогену, рекрутируя и активируя дополнительные белки комплемента, которые собираются в определенном порядке, образуя круглую пору или отверстие. Комплемент буквально пробивает небольшие дыры в патогене, создавая утечки, которые приводят к гибели клеток. Белки комплемента также служат сигнальными молекулами, которые предупреждают иммунные клетки и привлекают их к проблемной области.

Кровь и иммунные клетки человека

Кровь и иммунные клетки развиваются из гемопоэтических стволовых клеток (ГСК), которые представляют собой мультипотентные клетки со способностью к самообновлению, которые могут дифференцироваться во все типы клеток крови, включенные в лимфоидную и миелоидную линии. Эти клетки находятся в медуллярной области костного мозга. Зрелые клетки крови и иммунные клетки циркулируют в крови, а некоторые иммунные клетки также находятся в разных тканях, например печень и плацента.Анализ транскриптома показывает, что 75% (n = 14812) всех белков человека (n = 19670) обнаруживаются в крови и иммунных клетках, и 2440 из этих генов демонстрируют повышенную экспрессию в любых клетках крови и иммунных клетках по сравнению с другими группами клеток.

  • 2440 повышенных генов
  • 253 обогащенных гена
  • 423 групповых обогащенных гена
  • Основные функции: транспорт кислорода и иммунный ответ

Транскриптом крови и иммунных клеток

Транскриптом крови и иммунных клеток, основанный на scRNA-seq, может быть проанализирован на предмет специфичности, показывая количество генов с повышенной экспрессией в каждом конкретном типе клеток крови и иммунных клеток по сравнению с другими типами клеток (таблица 1).Гены с повышенной экспрессией делятся на три подкатегории:

  • Тип клеток с обогащением: по крайней мере, в четыре раза более высокий уровень мРНК в определенном типе клеток по сравнению с любым другим типом клеток.
  • Обогащенная группа: по крайней мере, в четыре раза выше средний уровень мРНК в группе из 2-10 типов клеток по сравнению с любым другим типом клеток.
  • Тип клеток улучшенный: по крайней мере, в четыре раза более высокий уровень мРНК в клетках определенного типа по сравнению со средним уровнем во всех других типах клеток.


Таблица 1.Количество генов в подразделяемых категориях специфичности повышенной экспрессии в анализируемых типах крови и иммунных клеток.

Повышенная экспрессия белков в крови и иммунных клетках

Углубленный анализ повышенных генов в крови и иммунных клетках с использованием scRNA-seq и профилирования белков на основе антител позволил нам визуализировать паттерны экспрессии этих белков в различных типах клеток крови и иммунных клеток: В-лимфоцитах, Т-лимфоцитах. , гранулоциты, моноциты, макрофаги, клетки Хофбауэра, клетки Купфера, эритроидные клетки и другие иммунные клетки.

В-клетки — лимфоидная система

Как показано в таблице 1, 255 генов в B-клетках повышено по сравнению с другими типами клеток. B-лимфоциты или B-клетки — это белые кровяные тельца подтипа лимфоцитов, созревающие в костном мозге. Они экспрессируют рецепторы B-клеток на своей поверхности, что позволяет им связывать определенные антигены и функционировать в компоненте гуморального иммунитета адаптивной иммунной системы, секретируя антитела. Мембранные 4-домены A1 (MS4A1) — это группа, обогащенная кровью, кишечником и лимфоидной тканью и экспрессирующаяся на поверхности B-клеток во время созревания и отсутствующая в ранних про-B-клетках и полностью дифференцированных плазматических клетках.Антиген В-лимфоцитов CD19 (CD19) функционирует как корецептор для комплекса рецепторов В-клеточного антигена (BCR) на В-лимфоцитах.



MS4A1 — pbmc
MS4A1 — pbmc
MS4A1 — лимфатический узел



CD19 — pbmc
CD19 — pbmc
CD19 — миндалина

Т-клетки — лимфоидная система

Как показано в таблице 1, 380 генов в Т-клетках повышено по сравнению с другими типами клеток.Т-лимфоциты или Т-клетки представляют собой тип лимфоцитов, которые вместе с В-лимфоцитами являются частью адаптивной иммунной системы. Примером белка с повышенной экспрессией является бета-цепь гликопротеина CD8 поверхности Т-клетки (CD8B), которая представляет собой бета-цепь гликопротеина CD8 поверхности клетки и является важной молекулой, опосредующей межклеточные взаимодействия в лимфоидных тканях. Действуя как корецептор Т-клеточного рецептора на Т-клетке, он распознает молекулы MHC класса I, отображаемые антигенпрезентирующей клеткой.Связанный с отбором тимоцитов (THEMIS) кодирует белок, участвующий в поздних фазах развития Т-клеток. Это необходимо для клонирования и функционирования посредством передачи сигналов рецептора антигена Т-клеток.



CD8B — pbmc
CD8B — pbmc
CD8B — вилочковая железа



Фемида — pbmc
Фемида — pbmc
ФЕМИДА — вилочковая железа

Гранулоциты

Как показано в таблице 1, 576 генов в гранулоцитах повышено по сравнению с другими типами клеток.Гранулоциты, также известные как полиморфноядерные лейкоциты (ПМЛ), являются основным типом лейкоцитов и частью врожденной иммунной системы против бактериальной инфекции. Они характеризуются высоким содержанием гранул в цитоплазме и имеют лопастное ядро ​​или сегментированное на две или более соединенные доли. Популяция гранулоцитов включает эозинофилы, базофилы и нейтрофилы, которые также являются наиболее распространенными типами. Матриксная металлопептидаза 9 (ММР9) представляет собой белок, обнаруживаемый в нейтрофилах, и может играть важную роль в локальном протеолизе внеклеточного матрикса и миграции лейкоцитов.CCAAT / связывающий энхансер белок эпсилон (CEBPE) представляет собой фактор транскрипции, который участвует в терминальной дифференцировке и функциональном созревании коммитированных предшественников гранулоцитов.



MMP9 — pbmc
MMP9 — pbmc
MMP9 — костный мозг



CEBPE — pbmc
CEBPE — pbmc
CEBPE — костный мозг

Моноциты

Как показано в таблице 1, 596 генов повышены в моноцитах по сравнению с другими типами клеток.Моноциты составляют 2-10% всех лейкоцитов в организме человека. Размножение происходит в костном мозге, а затем циркулирует кровоток, пока они не мигрируют в ткани и полости тела, где они дифференцируются в макрофаги и дендритные клетки. Они также обладают антимикробными функциями. Интегрин альфа M (ITGAM) экспрессируется преимущественно на человеческих моноцитах, но также на макрофагах, гранулоцитах и ​​естественных клетках-киллерах.



ITGAM — pbmc
ITGAM — pbmc
ITGAM — костный мозг

Макрофаги

Как показано в таблице 1, в макрофагах повышено содержание 407 генов по сравнению с другими типами клеток.Макрофаги принадлежат к группе белых кровяных телец, называемых фагоцитами, которые представляют собой тип клеток, специализирующихся на фагоцитозе, процессе, который защищает организм, поглощая клеточный мусор, мертвые клетки или патогены. Зрелые макрофаги находятся по всему телу в большинстве тканей, они не путешествуют далеко и редко встречаются в кровотоке, вместо этого они охраняют локально и ждут, чтобы активироваться. Поляризация макрофагов — это процесс, в котором они принимают разные функции в зависимости от сигналов, полученных из окружающей среды, и двумя основными состояниями являются M1 (провоспалительное) и M2 (противовоспалительное).Макрофагальный рецептор маннозы 1 (MRC1) представляет собой мембранный рецептор типа I, который может связываться на поверхности вирусов, бактерий и грибов, опосредуя фагоцитоз. Рецептор скавенджера макрофагов 1 (MSR1) кодирует рецептор на поверхности клетки макрофага, который выполняет гомеостатическую функцию, очищая модифицированные липиды и белки.



MRC1 — легкое
MRC1 — легкое
MRC1 — легкое



MSR1 — легкое
MSR1 — легкое
MSR1 — легкое

Клетки Хофбауэра — плацента

Как показано в таблице 1, в клетках Хофбауэра повышено содержание 660 генов по сравнению с другими типами клеток.Клетки Хофбауэра — это макрофаги плода, которые можно найти в строме ворсинок на всех этапах беременности. Этот термин используется для обозначения любых макрофагов плодного происхождения в ворсинчатом ядре плаценты, амнионе и лавах хориона. У них есть несколько предполагаемых функций, включая предотвращение вертикальной передачи, то есть передачи от матери к плоду, они являются проангиогенными и играют роль в морфогенезе плаценты. V-набор, содержащий иммуноглобулин-домен 4 (VSIG4), представляет собой белок, который экспрессируется в клетках Хофбауэра.Это фагоцитарный рецептор, сильный негативный регулятор пролиферации Т-клеток и выработки IL2. Мощный ингибитор конвертаз альтернативного пути комплемента. Другой белок, экспрессируемый в клетках Хофбауэра, — это (CD68), трансмембранный гликопротеин, который высоко экспрессируется человеческими моноцитами и тканевыми макрофагами.



VSIG4 — плацента
VSIG4 — плацента
VSIG4 — плацента



CD68 — плацента
CD68 — плацента
CD68 — плацента

клетки Купфера — печень

Как показано в таблице 1, в клетках Купфера повышено содержание 615 генов по сравнению с другими типами клеток.Клетки Купфера являются частью врожденной иммунной защиты печени, они представляют собой специализированные макрофаги, выстилающие синусоидальные эндотелиальные стенки печени и фильтрующие кровь от микробного мусора и частиц, которые попадают через воротную вену печени. Клетки Купфера составляют до 80-90% всех макрофагов в организме, и их функции и структуры различаются в зависимости от того, находятся ли они в центрилобулярной или перипортальной области. Рецептор макрофагов с коллагеновой структурой (MARCO) — это белок, экспрессируемый на макрофагах, включая клетки Купфера, который может связывать как грамположительные, так и грамотрицательные бактерии.



МАРКО — печень
МАРКО — печень
МАРКО — печень

Эритроидные клетки — кровь

Как показано в таблице 1, в эритроидных клетках повышено содержание 349 генов по сравнению с другими типами клеток. Эритроидные клетки, также называемые эритроцитами или эритроцитами, получают кислород из вдыхаемого воздуха в легких и транспортируют кислород во все ткани тела через систему кровообращения.Субъединица гемоглобина бета HBB и субъединица дельта HBD являются компонентами молекулы гемоглобина, которая экспрессируется исключительно в эритроидных клетках и связывает кислород.



ГБД — печень
ГБД — печень
ГБД — печень



HBD — печень
HBD — печень
HBD — печень

Другие иммунные клетки

Дендритные клетки представляют собой антигенпрезентирующие клетки, присутствующие в тканях, которые находятся в контакте с внешней средой, т.е.г. кожа, но также в незрелом состоянии в крови, и после активации они мигрируют в лимфатические узлы, чтобы взаимодействовать с Т-клетками и В-клетками. Они действуют как посредники между врожденной и адаптивной иммунной системами. Молекула CD207 (CD207) представляет собой рецептор, экспрессируемый на поверхности клеток Лангерганса, дендритных клеток кожи. Благодаря этому рецептору клетки Лангерганса связывают и поглощают антигены на поверхности инфекционных агентов и представляют антигены Т-клеткам.


CD207 — кожа
CD207 — кожа (увеличено)

Естественные клетки-киллеры (NK-клетки) — это тип цитотоксических лимфоцитов, которые циркулируют в крови.Являясь важной частью врожденной иммунной системы, они патрулируют организм и при контакте с инфицированными вирусом клетками, образованием опухолей и стрессовыми клетками быстро реагируют, высвобождая цитотоксические гранулы, которые разрушают целевую клетку (клетки). NK-клетки распознают аномальные клетки через различные типы рецепторных белковых комплексов, включая лектин-подобный рецептор K1 (KLRK1) клеток-киллеров, который функционирует как активирующий и костимулирующий рецептор при связывании с различными индуцируемыми клеточным стрессом лигандами, отображаемыми на поверхности аутологичных клеток. опухолевые клетки и инфицированные вирусом клетки.


KLRK1 — миндалина
KLRK1 — миндалина (увеличена)

Тучные клетки находятся в соединительной ткани по всему телу, в частности, в коже, дыхательной системе, желудочно-кишечном тракте и мочевыводящих путях. Они являются частью врожденной и адаптивной иммунной системы, а также участвуют в поддержании здоровья сосудистой системы. Тучные клетки также связаны с такими заболеваниями, как аллергия и астма.Два хорошо известных белка, обнаруженных в тучных клетках, — это триптаза дельта 1 (TPSD1), протеаза, которая секретируется при активации тучных клеток, и гематопоэтическая простагландин D-синтаза (HPGDS), белок, участвующий в производстве простаноидов в иммунной системе.


TPSD1 — желудок
TPSD1 — желудок (увеличен)


HPGDS — легкое
HPGDS — легкое (увеличено)

Тромбоциты производятся мегакариоцитами в костном мозге и попадают в циркулирующую кровь.Их основная роль — инициировать образование тромба в ответ на повреждение кровеносных сосудов. Кроме того, они могут играть важную роль в регуляции иммунитета и воспаления. Белок, экспрессируемый на поверхности тромбоцитов, — это тромбоцит гликопротеина IX ({hpa: fabricLink} GP9 {/ hpa), который позволяет прикрепляться к поврежденным кровеносным сосудам.


GP9 — костный мозг
GP9 — костный мозг (увеличено)

Кровь выполняет множество важных функций, включая транспортировку кислорода / углекислого газа, удаление отходов, коагуляцию и регулирование температуры тела и т. Д.Кровь, на долю которой приходится около 7% массы тела человека, циркулирует по телу по кровеносным сосудам и синтезируется в процессе кроветворения. HSC могут давать начало всем клеткам крови, включая: В-лимфоциты, Т-лимфоциты, естественные клетки-киллеры, гранулоциты, моноциты, эритроциты и тромбоциты. Исследования предложили две модели кроветворения: детерминированную или стохастическую. В детерминированной модели предполагается, что разные факторы в гемопоэтическом микроокружении определяют, во что должны дифференцироваться HSCs.В стохастической модели HSCs дифференцируются в определенные клетки крови случайным образом.

Помимо продукции антител в ответ на контакт с антигенами, B-клетки также являются классическими антигенпрезентирующими клетками и секретируют цитокины. Наивные В-лимфоциты находятся в лимфатических узлах и еще не подверглись воздействию антигена. После активации антигена они дифференцируются либо в плазматические клетки, либо в B-клетки памяти. В-лимфоциты памяти образуются в зародышевых центрах после первичной инфекции и играют важную роль в создании ускоренного и более устойчивого иммунного ответа, опосредованного антителами, в случае повторного инфицирования.Они локализованы в областях облегченного контакта с антигенами, и по сравнению с наивными B-клетками они имеют более высокое сродство к иммунизирующему антигену, продолжительность жизни десятилетий вместо недель, а также более быструю и более эффективную пролиферацию и дифференцировку.

Т-клетки происходят из кроветворных клеток костного мозга, которые развиваются в незрелые тимоциты в тимусе. Тимоциты дифференцируются в несколько типов зрелых Т-клеток; Т-хелперы, цитотоксические Т-клетки, Т-клетки памяти, регуляторные Т-клетки и естественные Т-клетки-киллеры.Во время созревания Т-клетки подвергаются β-отбору и положительному отбору в коре тимуса и отрицательному отбору в мозговом веществе тимуса.

Гистология органов, содержащих кровь и иммунные клетки, включая интерактивные изображения, описана в гистологическом словаре белкового атласа.

Здесь описаны и охарактеризованы гены, кодирующие белок, экспрессируемые в клетках крови и иммунных клетках, вместе с примерами иммуногистохимически окрашенных срезов ткани, которые визуализируют соответствующие паттерны экспрессии белков генов с повышенной экспрессией в различных типах крови и иммунных клеток.

Профилирование транскриптов было основано на общедоступных данных по экспрессии в масштабе всего генома из экспериментов scRNA-seq, охватывающих 13 различных нормальных тканей, а также на анализе мононуклеарных клеток периферической крови (PBMC) человека. Все наборы данных (количество нефильтрованных считываний ячеек) были сгруппированы отдельно с использованием кластеризации Лувена, и полученные кластеры были собраны в конце, в результате чего в общей сложности было 192 кластера различных типов ячеек. Затем кластеры вручную аннотировали на основе обзора известных тканевых и специфичных для типа клеток маркеров.Данные scRNA-seq из каждого кластера клеток были агрегированы для получения среднего значения нормализованных кодирующих белок транскриптов на миллион (pTPM) и нормализованного значения экспрессии (nTPM) для всех генов, кодирующих белок. Классификация по специфичности и распределению была проведена для определения количества генов, повышенных в этих отдельных типах клеток, и количества генов, обнаруженных в одном, нескольких или всех типах клеток, соответственно.

Следует отметить, что, поскольку анализ ограничивался наборами данных только по 13 органам, представлены не все типы клеток человека.Кроме того, некоторые типы клеток присутствуют только в небольших количествах или идентифицируются только в смешанных кластерах клеток, что может повлиять на результаты и изменить специфичность типа клеток.

Uhlén M. et al., Тканевая карта протеома человека. Science (2015)
PubMed: 25613900 DOI: 10.1126 / science.1260419

Fagerberg L et al., Анализ тканеспецифической экспрессии человека путем полногеномной интеграции транскриптомики и протеомики на основе антител. Протеомика клеток Mol. (2014)
PubMed: 24309898 DOI: 10.1074 / mcp.M113.035600

Uhlen M et al., Полногеномный транскриптомный анализ генов, кодирующих белок в клетках крови человека. Наука. (2019)
PubMed: 31857451 DOI: 10.1126 / science.aax9198

Vieira Braga FA et al., Перепись клеток легких человека выявляет новые состояния клеток при здоровье, астме и периоде; Nat Med & period; (2019)
PubMed: 31209336 DOI: 10.1038 / s41591-019-0468-5

Chen J et al., Фиксация и обработка PBMC для секвенирования одноклеточной РНК хрома & период; J Transl Med & period; (2018)
PubMed: 30016977 DOI: 10.1186 / s12967-018-1578-4

Henry GH et al., A Клеточная анатомия нормальной простаты и простатической уретры взрослого человека & period; Cell Rep & period; (2018)
PubMed: 30566875 DOI: 10.1016 / j.celrep.2018.11.086

Liao J et al., Секвенирование одноклеточной РНК почек человека & period; Научные данные и период; (2020)
PubMed: 31896769 DOI: 10.1038 / s41597-019-0351-8

MacParland SA et al., Секвенирование одноклеточной РНК печени человека выявляет различные внутрипеченочные популяции макрофагов & период; Nat Commun & period; (2018)
PubMed: 30348985 DOI: 10.1038 / s41467-018-06318-7

Parikh K et al., Разнообразие эпителиальных клеток толстой кишки в состоянии здоровья и воспалительных заболеваниях кишечника и периоде; Природа и период; (2019)
PubMed: 30814735 DOI: 10.1038 / s41586-019-0992-y

Qadir MMF et al., Одноклеточный анализ ниши клеток-предшественников протоков поджелудочной железы человека и период; Proc Natl Acad Sci U S A & period; (2020)
PubMed: 32354994 DOI: 10.1073 / pnas.1918314117

Solé-Boldo L et al., Одноклеточные транскриптомы кожи человека показывают возрастную потерю прайминга фибробластов и период; Commun Biol & period; (2020)
PubMed: 32327715 DOI: 10.1038 / s42003-020-0922-4

Vento-Tormo R et al., Одноклеточная реконструкция ранней границы раздела матери и плода у людей & период; Природа и период; (2018)
PubMed: 30429548 DOI: 10.1038 / s41586-018-0698-6

Иммунная система человека и инфекционные заболевания

Все живые существа подвержены атакам болезнетворных агентов. Даже у бактерий, настолько малых, что на булавочной головке может поместиться более миллиона, есть системы для защиты от заражения вирусами.Этот вид защиты усложняется по мере того, как организмы становятся более сложными.

У многоклеточных животных есть специальные клетки или ткани для борьбы с угрозой заражения. Некоторые из этих реакций происходят немедленно, так что возбудителя инфекции можно быстро локализовать. Другие ответы более медленные, но более адаптированы к возбудителю инфекции. В совокупности эти средства защиты известны как иммунная система . Иммунная система человека необходима для нашего выживания в мире, полном потенциально опасных микробов, и серьезное повреждение даже одной ветви этой системы может предрасполагать к тяжелым, даже опасным для жизни инфекциям.

Неспецифический (врожденный) иммунитет

Иммунная система человека имеет два уровня иммунитета: специфический и неспецифический. Благодаря неспецифическому иммунитету, также называемому врожденным иммунитетом, человеческий организм защищает себя от посторонних материалов, которые считаются вредными. Можно атаковать микробы, такие маленькие, как вирусы и бактерии, а также более крупные организмы, такие как черви. В совокупности эти организмы называются патогенами, когда они вызывают болезнь у хозяина.

Все животные обладают врожденной иммунной защитой от обычных патогенов.Эти первые линии защиты включают внешние барьеры, такие как кожа и слизистые оболочки. Когда патогены прорываются через внешние барьеры, например, через порез на коже или при вдыхании в легкие, они могут причинить серьезный вред.

Некоторые белые кровяные тельца (фагоциты) борются с патогенами, которые преодолевают внешние защитные механизмы. Фагоцит окружает патоген, поглощает его и нейтрализует.

Специфический иммунитет

Хотя здоровые фагоциты имеют решающее значение для хорошего здоровья, они не могут противостоять определенным инфекционным угрозам.Специфический иммунитет — это дополнение к функции фагоцитов и других элементов врожденной иммунной системы.

В отличие от врожденного иммунитета, специфический иммунитет позволяет получить целенаправленный ответ против определенного патогена. Только позвоночные животные обладают специфическим иммунным ответом.

Два типа белых кровяных телец, называемых лимфоцитами, жизненно важны для специфического иммунного ответа. Лимфоциты производятся в костном мозге и превращаются в один из нескольких подтипов. Двумя наиболее распространенными являются Т-клетки и В-клетки.

Антиген — это чужеродный материал, который вызывает ответ Т- и В-клеток. В организме человека есть В- и Т-клетки, специфичные для миллионов различных антигенов. Обычно мы считаем антигены частью микробов, но антигены могут присутствовать и в других условиях. Например, если человеку сделали переливание крови, не соответствующей его группе крови, это могло вызвать реакцию со стороны Т- и В-клеток.

Полезно думать о Т-клетках и В-клетках следующим образом: В-клетки обладают одним важным свойством.Они могут созревать и дифференцироваться в плазматические клетки, вырабатывающие белок, называемый антителом. Этот белок специально нацелен на определенный антиген. Однако сами по себе В-клетки не очень хороши в производстве антител и полагаются на Т-клетки, чтобы подавать сигнал о том, что они должны начать процесс созревания. Когда должным образом информированная В-клетка распознает антиген, на который она закодирована, она делится и производит множество плазматических клеток. Затем плазматические клетки секретируют большое количество антител, которые борются со специфическими антигенами, циркулирующими в крови.

Т-клетки активируются, когда определенный фагоцит, известный как антигенпрезентирующая клетка (АПК), отображает антиген, к которому Т-клетка специфична. Эта смешанная клетка (в основном человеческая, но демонстрирующая антиген Т-клетки) является триггером различных элементов специфического иммунного ответа.

Подтип Т-лимфоцитов, известный как Т-хелперы, выполняет ряд ролей. Т-хелперные клетки выделяют химические вещества в

  • Помогите активировать В-клетки для деления на плазматические клетки
  • Вызов фагоцитов для уничтожения микробов
  • Активировать Т-киллеры

После активации Т-киллеры распознают инфицированные клетки тела и уничтожают их.

Регуляторные Т-клетки (также называемые супрессорными Т-клетками) помогают контролировать иммунный ответ. Они распознают, когда угроза была локализована, и затем посылают сигналы, чтобы остановить атаку.

Органы и ткани

Клетки, составляющие специфический иммунный ответ, циркулируют в крови, но они также обнаруживаются во многих органах. Внутри органа иммунные ткани обеспечивают созревание иммунных клеток, улавливают патогены и обеспечивают место, где иммунные клетки могут взаимодействовать друг с другом и вызывать специфический ответ.Органы и ткани, участвующие в иммунной системе, включают вилочковую железу, костный мозг, лимфатические узлы, селезенку, аппендикс, миндалины и пятна Пейера (в тонком кишечнике).

I

Инфекция и болезнь

Инфекция возникает, когда патоген проникает в клетки организма и размножается. Инфекция обычно вызывает иммунный ответ. Если реакция будет быстрой и эффективной, инфекция будет устранена или локализована так быстро, что болезнь не возникнет.

Иногда инфекция приводит к болезни.(Здесь мы сосредоточимся на инфекционном заболевании и определим его как состояние инфекции, которое характеризуется симптомами или признаками заболевания.) Заболевание может возникать при низком или ослабленном иммунитете, когда вирулентность патогена (его способность повреждать клетки-хозяева) ) высока, и когда количество болезнетворных микроорганизмов в организме велико.

В зависимости от инфекционного заболевания симптомы могут сильно различаться. Лихорадка — это обычная реакция на инфекцию: более высокая температура тела может усилить иммунный ответ и создать враждебную среду для патогенов.Воспаление или отек, вызванные увеличением жидкости в инфицированной области, являются признаком того, что лейкоциты атакуют и выделяют вещества, участвующие в иммунном ответе.

Вакцинация стимулирует специфический иммунный ответ, который создает В- и Т-клетки памяти, специфичные для определенного патогена. Эти клетки памяти сохраняются в организме и могут привести к быстрой и эффективной реакции, если организм снова столкнется с патогеном.

Дополнительную информацию о вакцинации см. В упражнении «Как работают вакцины».

Источники

Хант Р. Вирусология: микробиология и иммунология в Интернете. Университет Южной Каролины. Дата обращения 10.01.2018.

Руководство Merck: Домашнее издание. Инфекции. Дата обращения 10.01.2018.

Delves, P.J. Руководство Merck: Домашнее издание. Обзор иммунной системы. Дата обращения 10.01.2018.

Последнее обновление 10 января 2018

.
Иммунные клетки человека: Математики выяснили, сколько иммунных клеток нужно для защиты от ВИЧ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *